Abstract:Nowadays, federated recommendation technology is rapidly evolving to help multiple organisations share data and train models while meeting user privacy, data security and government regulatory requirements. However, federated recommendation increases customer system costs such as power, computational and communication resources. Besides, federated recommendation systems are also susceptible to model attacks and data poisoning by participating malicious clients. Therefore, most customers are unwilling to participate in federated recommendation without any incentive. To address these problems, we propose a blockchain-based federated recommendation system with incentive mechanism to promote more trustworthy, secure, and efficient federated recommendation service. First, we construct a federated recommendation system based on NeuMF and FedAvg. Then we introduce a reverse auction mechanism to select optimal clients that can maximize the social surplus. Finally, we employ blockchain for on-chain evidence storage of models to ensure the safety of the federated recommendation system. The experimental results show that our proposed incentive mechanism can attract clients with superior training data to engage in the federal recommendation at a lower cost, which can increase the economic benefit of federal recommendation by 54.9\% while improve the recommendation performance. Thus our work provides theoretical and technological support for the construction of a harmonious and healthy ecological environment for the application of federal recommendation.
Abstract:In medical images, various types of lesions often manifest significant differences in their shape and texture. Accurate medical image segmentation demands deep learning models with robust capabilities in multi-scale and boundary feature learning. However, previous networks still have limitations in addressing the above issues. Firstly, previous networks simultaneously fuse multi-level features or employ deep supervision to enhance multi-scale learning. However, this may lead to feature redundancy and excessive computational overhead, which is not conducive to network training and clinical deployment. Secondly, the majority of medical image segmentation networks exclusively learn features in the spatial domain, disregarding the abundant global information in the frequency domain. This results in a bias towards low-frequency components, neglecting crucial high-frequency information. To address these problems, we introduce SF-UNet, a spatial-frequency dual-domain attention network. It comprises two main components: the Multi-scale Progressive Channel Attention (MPCA) block, which progressively extract multi-scale features across adjacent encoder layers, and the lightweight Frequency-Spatial Attention (FSA) block, with only 0.05M parameters, enabling concurrent learning of texture and boundary features from both spatial and frequency domains. We validate the effectiveness of the proposed SF-UNet on three public datasets. Experimental results show that compared to previous state-of-the-art (SOTA) medical image segmentation networks, SF-UNet achieves the best performance, and achieves up to 9.4\% and 10.78\% improvement in DSC and IOU. Codes will be released at https://github.com/nkicsl/SF-UNet.
Abstract:Limited labeled data hinder the application of deep learning in medical domain. In clinical practice, there are sufficient unlabeled data that are not effectively used, and semi-supervised learning (SSL) is a promising way for leveraging these unlabeled data. However, existing SSL methods ignore frequency domain and region-level information and it is important for lesion regions located at low frequencies and with significant scale changes. In this paper, we introduce two consistency regularization strategies for semi-supervised medical image segmentation, including frequency domain consistency (FDC) to assist the feature learning in frequency domain and multi-granularity region similarity consistency (MRSC) to perform multi-scale region-level local context information feature learning. With the help of the proposed FDC and MRSC, we can leverage the powerful feature representation capability of them in an effective and efficient way. We perform comprehensive experiments on two datasets, and the results show that our method achieves large performance gains and exceeds other state-of-the-art methods.
Abstract:Robustness to Byzantine attacks is a necessity for various distributed training scenarios. When the training reduces to the process of solving a minimization problem, Byzantine robustness is relatively well-understood. However, other problem formulations, such as min-max problems or, more generally, variational inequalities, arise in many modern machine learning and, in particular, distributed learning tasks. These problems significantly differ from the standard minimization ones and, therefore, require separate consideration. Nevertheless, only one work (Adibi et al., 2022) addresses this important question in the context of Byzantine robustness. Our work makes a further step in this direction by providing several (provably) Byzantine-robust methods for distributed variational inequality, thoroughly studying their theoretical convergence, removing the limitations of the previous work, and providing numerical comparisons supporting the theoretical findings.