Abstract:Local causal discovery aims to learn and distinguish the direct causes and effects of a target variable from observed data. Existing constraint-based local causal discovery methods use AND or OR rules in constructing the local causal skeleton, but using either rule alone is prone to produce cascading errors in the learned local causal skeleton, and thus impacting the inference of local causal relationships. On the other hand, directly applying score-based global causal discovery methods to local causal discovery may randomly return incorrect results due to the existence of local equivalence classes. To address the above issues, we propose a Hybrid Local Causal Discovery algorithm, called HLCD. Specifically, HLCD initially utilizes a constraint-based approach combined with the OR rule to obtain a candidate skeleton and then employs a score-based method to eliminate redundant portions in the candidate skeleton. Furthermore, during the local causal orientation phase, HLCD distinguishes between V-structures and equivalence classes by comparing the local structure scores between the two, thereby avoiding orientation interference caused by local equivalence classes. We conducted extensive experiments with seven state-of-the-art competitors on 14 benchmark Bayesian network datasets, and the experimental results demonstrate that HLCD significantly outperforms existing local causal discovery algorithms.
Abstract:Multi-view clustering (MVC) aims to integrate complementary information from multiple views to enhance clustering performance. Late Fusion Multi-View Clustering (LFMVC) has shown promise by synthesizing diverse clustering results into a unified consensus. However, current LFMVC methods struggle with noisy and redundant partitions and often fail to capture high-order correlations across views. To address these limitations, we present a novel theoretical framework for analyzing the generalization error bounds of multiple kernel $k$-means, leveraging local Rademacher complexity and principal eigenvalue proportions. Our analysis establishes a convergence rate of $\mathcal{O}(1/n)$, significantly improving upon the existing rate in the order of $\mathcal{O}(\sqrt{k/n})$. Building on this insight, we propose a low-pass graph filtering strategy within a multiple linear $k$-means framework to mitigate noise and redundancy, further refining the principal eigenvalue proportion and enhancing clustering accuracy. Experimental results on benchmark datasets confirm that our approach outperforms state-of-the-art methods in clustering performance and robustness. The related codes is available at https://github.com/csliangdu/GMLKM .
Abstract:Enhancing the computational efficiency of on-device Deep Neural Networks (DNNs) remains a significant challengein mobile and edge computing. As we aim to execute increasingly complex tasks with constrained computational resources, much of the research has focused on compressing neural network structures and optimizing systems. Although many studies have focused on compressing neural network structures and parameters or optimizing underlying systems, there has been limited attention on optimizing the fundamental building blocks of neural networks: the neurons. In this study, we deliberate on a simple but important research question: Can we design artificial neurons that offer greater efficiency than the traditional neuron paradigm? Inspired by the threshold mechanisms and the excitation-inhibition balance observed in biological neurons, we propose a novel artificial neuron model, Threshold Neurons. Using Threshold Neurons, we can construct neural networks similar to those with traditional artificial neurons, while significantly reducing hardware implementation complexity. Our extensive experiments validate the effectiveness of neural networks utilizing Threshold Neurons, achieving substantial power savings of 7.51x to 8.19x and area savings of 3.89x to 4.33x at the kernel level, with minimal loss in precision. Furthermore, FPGA-based implementations of these networks demonstrate 2.52x power savings and 1.75x speed enhancements at the system level. The source code will be made available upon publication.
Abstract:Deploying Spiking Neural Networks (SNNs) on the Xylo neuromorphic chip via the Rockpool framework represents a significant advancement in achieving ultra-low-power consumption and high computational efficiency for edge applications. This paper details a novel deployment pipeline, emphasizing the integration of Rockpool's capabilities with Xylo's architecture, and evaluates the system's performance in terms of energy efficiency and accuracy. The unique advantages of the Xylo chip, including its digital spiking architecture and event-driven processing model, are highlighted to demonstrate its suitability for real-time, power-sensitive applications.
Abstract:The ability to wield tools was once considered exclusive to human intelligence, but it's now known that many other animals, like crows, possess this capability. Yet, robotic systems still fall short of matching biological dexterity. In this paper, we investigate the use of Large Language Models (LLMs), tool affordances, and object manoeuvrability for non-prehensile tool-based manipulation tasks. Our novel method leverages LLMs based on scene information and natural language instructions to enable symbolic task planning for tool-object manipulation. This approach allows the system to convert the human language sentence into a sequence of feasible motion functions. We have developed a novel manoeuvrability-driven controller using a new tool affordance model derived from visual feedback. This controller helps guide the robot's tool utilization and manipulation actions, even within confined areas, using a stepping incremental approach. The proposed methodology is evaluated with experiments to prove its effectiveness under various manipulation scenarios.
Abstract:Most of the research on clustering ensemble focuses on designing practical consistency learning algorithms.To solve the problems that the quality of base clusters varies and the low-quality base clusters have an impact on the performance of the clustering ensemble, from the perspective of data mining, the intrinsic connections of data were mined based on the base clusters, and a high-order information fusion algorithm was proposed to represent the connections between data from different dimensions, namely Clustering Ensemble with High-order Consensus learning (HCLCE). Firstly, each high-order information was fused into a new structured consistency matrix. Then, the obtained multiple consistency matrices were fused together. Finally, multiple information was fused into a consistent result. Experimental results show that LCLCE algorithm has the clustering accuracy improved by an average of 7.22%, and the Normalized Mutual Information (NMI) improved by an average of 9.19% compared with the suboptimal Locally Weighted Evidence Accumulation (LWEA) algorithm. It can be seen that the proposed algorithm can obtain better clustering results compared with clustering ensemble algorithms and using one information alone.
Abstract:Multiple kernel learning (MKL) aims to find an optimal, consistent kernel function. In the hierarchical multiple kernel clustering (HMKC) algorithm, sample features are extracted layer by layer from a high-dimensional space to maximize the retention of effective information. However, information interaction between layers is often ignored. In this model, only corresponding nodes in adjacent layers exchange information; other nodes remain isolated, and if full connectivity is adopted, the diversity of the final consistency matrix is reduced. Therefore, this paper proposes a hierarchical multiple kernel K-Means (SCHMKKM) algorithm based on sparse connectivity, which controls the assignment matrix to achieve sparse connections through a sparsity rate, thereby locally fusing the features obtained by distilling information between layers. Finally, we conduct cluster analysis on multiple datasets and compare it with the fully connected hierarchical multiple kernel K-Means (FCHMKKM) algorithm in experiments. It is shown that more discriminative information fusion is beneficial for learning a better consistent partition matrix, and the fusion strategy based on sparse connection outperforms the full connection strategy.
Abstract:Feature selection technology is a key technology of data dimensionality reduction. Becauseof the lack of label information of collected data samples, unsupervised feature selection has attracted more attention. The universality and stability of many unsupervised feature selection algorithms are very low and greatly affected by the dataset structure. For this reason, many researchers have been keen to improve the stability of the algorithm. This paper attempts to preprocess the data set and use an interval method to approximate the data set, experimentally verifying the advantages and disadvantages of the new interval data set. This paper deals with these data sets from the global perspective and proposes a new algorithm-unsupervised feature selection algorithm based on neighborhood interval disturbance fusion(NIDF). This method can realize the joint learning of the final score of the feature and the approximate data interval. By comparing with the original unsupervised feature selection methods and several existing feature selection frameworks, the superiority of the proposed model is verified.
Abstract:A symmetric nonnegative matrix factorization algorithm based on self-paced learning was proposed to improve the clustering performance of the model. It could make the model better distinguish normal samples from abnormal samples in an error-driven way. A weight variable that could measure the degree of difficulty to all samples was assigned in this method, and the variable was constrained by adopting both hard-weighting and soft-weighting strategies to ensure the rationality of the model. Cluster analysis was carried out on multiple data sets such as images and texts, and the experimental results showed the effectiveness of the proposed algorithm.
Abstract:Multiple kernel methods less consider the intrinsic manifold structure of multiple kernel data and estimate the consensus kernel matrix with quadratic number of variables, which makes it vulnerable to the noise and outliers within multiple candidate kernels. This paper first presents the clustering method via kernelized local regression (CKLR). It captures the local structure of kernel data and employs kernel regression on the local region to predict the clustering results. Moreover, this paper further extends it to perform clustering via the multiple kernel local regression (CMKLR). We construct the kernel level local regression sparse coefficient matrix for each candidate kernel, which well characterizes the kernel level manifold structure. We then aggregate all the kernel level local regression coefficients via linear weights and generate the consensus sparse local regression coefficient, which largely reduces the number of candidate variables and becomes more robust against noises and outliers within multiple kernel data. Thus, the proposed method CMKLR avoids the above two limitations. It only contains one additional hyperparameter for tuning. Extensive experimental results show that the clustering performance of the proposed method on benchmark datasets is better than that of 10 state-of-the-art multiple kernel clustering methods.