Abstract:We study a new problem setting of question answering (QA), referred to as DocTabQA. Within this setting, given a long document, the goal is to respond to questions by organizing the answers into structured tables derived directly from the document's content. Unlike traditional QA approaches which predominantly rely on unstructured text to formulate responses, DocTabQA aims to leverage structured tables as answers to convey information clearly and systematically, thereby enhancing user comprehension and highlighting relationships between data points. To the best of our knowledge, this problem has not been previously explored. In this paper, we introduce the QTabA dataset, encompassing 300 financial documents, accompanied by manually annotated 1.5k question-table pairs. Initially, we leverage Large Language Models (LLMs) such as GPT-4 to establish a baseline. However, it is widely acknowledged that LLMs encounter difficulties when tasked with generating intricate, structured outputs from long input sequences. To overcome these challenges, we present a two-stage framework, called DocTabTalk, which initially retrieves relevant sentences from extensive documents and subsequently generates hierarchical tables based on these identified sentences. DocTabTalk incorporates two key technological innovations: AlignLLaMA and TabTalk, which are specifically tailored to assist GPT-4 in tackling DocTabQA, enabling it to generate well-structured, hierarchical tables with improved organization and clarity. Comprehensive experimental evaluations conducted on both QTabA and RotoWire datasets demonstrate that our DocTabTalk significantly enhances the performances of the GPT-4 in our proposed DocTabQA task and the table generation task. The code and dataset are available at https://github.com/SmileWHC/DocTabQA for further research.
Abstract:Large Language Models (LLMs) have significantly advanced artificial intelligence, excelling in numerous tasks. Although the functionality of a model is inherently tied to its parameters, a systematic method for exploring the connections between the parameters and the functionality are lacking. Models sharing similar structure and parameter counts exhibit significant performance disparities across various tasks, prompting investigations into the varying patterns that govern their performance. We adopted a mutagenesis screen approach inspired by the methods used in biological studies, to investigate Llama2-7b and Zephyr. This technique involved mutating elements within the models' matrices to their maximum or minimum values to examine the relationship between model parameters and their functionalities. Our research uncovered multiple levels of fine structures within both models. Many matrices showed a mixture of maximum and minimum mutations following mutagenesis, but others were predominantly sensitive to one type. Notably, mutations that produced phenotypes, especially those with severe outcomes, tended to cluster along axes. Additionally, the location of maximum and minimum mutations often displayed a complementary pattern on matrix in both models, with the Gate matrix showing a unique two-dimensional asymmetry after rearrangement. In Zephyr, certain mutations consistently resulted in poetic or conversational rather than descriptive outputs. These "writer" mutations grouped according to the high-frequency initial word of the output, with a marked tendency to share the row coordinate even when they are in different matrices. Our findings affirm that the mutagenesis screen is an effective tool for deciphering the complexities of large language models and identifying unexpected ways to expand their potential, providing deeper insights into the foundational aspects of AI systems.
Abstract:Recently, there has been a surge of interest in developing graph neural networks that utilize the invariance principle on graphs to generalize the out-of-distribution (OOD) data. Due to the limited knowledge about OOD data, existing approaches often pose assumptions about the correlation strengths of the underlying spurious features and the target labels. However, this prior is often unavailable and will change arbitrarily in the real-world scenarios, which may lead to severe failures of the existing graph invariance learning methods. To bridge this gap, we introduce a novel graph invariance learning paradigm, which induces a robust and general inductive bias. The paradigm is built upon the observation that the infomax principle encourages learning spurious features regardless of spurious correlation strengths. We further propose the EQuAD framework that realizes this learning paradigm and employs tailored learning objectives that provably elicit invariant features by disentangling them from the spurious features learned through infomax. Notably, EQuAD shows stable and enhanced performance across different degrees of bias in synthetic datasets and challenging real-world datasets up to $31.76\%$. Our code is available at \url{https://github.com/tianyao-aka/EQuAD}.
Abstract:Recent years have witnessed a trend that large language model (LLM) based text-to-speech (TTS) emerges into the mainstream due to their high naturalness and zero-shot capacity. In this paradigm, speech signals are discretized into token sequences, which are modeled by an LLM with text as prompts and reconstructed by a token-based vocoder to waveforms. Obviously, speech tokens play a critical role in LLM-based TTS models. Current speech tokens are learned in an unsupervised manner, which lacks explicit semantic information and alignment to the text. In this paper, we propose to represent speech with supervised semantic tokens, which are derived from a multilingual speech recognition model by inserting vector quantization into the encoder. Based on the tokens, we further propose a scalable zero-shot TTS synthesizer, CosyVoice, which consists of an LLM for text-to-token generation and a conditional flow matching model for token-to-speech synthesis. Experimental results show that supervised semantic tokens significantly outperform existing unsupervised tokens in terms of content consistency and speaker similarity for zero-shot voice cloning. Moreover, we find that utilizing large-scale data further improves the synthesis performance, indicating the scalable capacity of CosyVoice. To the best of our knowledge, this is the first attempt to involve supervised speech tokens into TTS models.
Abstract:Diffusion models (DMs) have shown remarkable capabilities in generating realistic high-quality images, audios, and videos. They benefit significantly from extensive pre-training on large-scale datasets, including web-crawled data with paired data and conditions, such as image-text and image-class pairs. Despite rigorous filtering, these pre-training datasets often inevitably contain corrupted pairs where conditions do not accurately describe the data. This paper presents the first comprehensive study on the impact of such corruption in pre-training data of DMs. We synthetically corrupt ImageNet-1K and CC3M to pre-train and evaluate over 50 conditional DMs. Our empirical findings reveal that various types of slight corruption in pre-training can significantly enhance the quality, diversity, and fidelity of the generated images across different DMs, both during pre-training and downstream adaptation stages. Theoretically, we consider a Gaussian mixture model and prove that slight corruption in the condition leads to higher entropy and a reduced 2-Wasserstein distance to the ground truth of the data distribution generated by the corruptly trained DMs. Inspired by our analysis, we propose a simple method to improve the training of DMs on practical datasets by adding condition embedding perturbations (CEP). CEP significantly improves the performance of various DMs in both pre-training and downstream tasks. We hope that our study provides new insights into understanding the data and pre-training processes of DMs.
Abstract:Open-vocabulary object detection (OVD) requires solid modeling of the region-semantic relationship, which could be learned from massive region-text pairs. However, such data is limited in practice due to significant annotation costs. In this work, we propose RTGen to generate scalable open-vocabulary region-text pairs and demonstrate its capability to boost the performance of open-vocabulary object detection. RTGen includes both text-to-region and region-to-text generation processes on scalable image-caption data. The text-to-region generation is powered by image inpainting, directed by our proposed scene-aware inpainting guider for overall layout harmony. For region-to-text generation, we perform multiple region-level image captioning with various prompts and select the best matching text according to CLIP similarity. To facilitate detection training on region-text pairs, we also introduce a localization-aware region-text contrastive loss that learns object proposals tailored with different localization qualities. Extensive experiments demonstrate that our RTGen can serve as a scalable, semantically rich, and effective source for open-vocabulary object detection and continue to improve the model performance when more data is utilized, delivering superior performance compared to the existing state-of-the-art methods.
Abstract:Stylized Text-to-Image Generation (STIG) aims to generate images based on text prompts and style reference images. We in this paper propose a novel framework dubbed as StyleMaster for this task by leveraging pretrained Stable Diffusion (SD), which tries to solve the previous problems such as insufficient style and inconsistent semantics. The enhancement lies in two novel module, namely multi-source style embedder and dynamic attention adapter. In order to provide SD with better style embeddings, we propose the multi-source style embedder considers both global and local level visual information along with textual one, which provide both complementary style-related and semantic-related knowledge. Additionally, aiming for better balance between the adaptor capacity and semantic control, the proposed dynamic attention adapter is applied to the diffusion UNet in which adaptation weights are dynamically calculated based on the style embeddings. Two objective functions are introduced to optimize the model together with denoising loss, which can further enhance semantic and style consistency. Extensive experiments demonstrate the superiority of StyleMaster over existing methods, rendering images with variable target styles while successfully maintaining the semantic information from the text prompts.
Abstract:Document layout analysis (DLA) is crucial for understanding the physical layout and logical structure of documents, serving information retrieval, document summarization, knowledge extraction, etc. However, previous studies have typically used separate models to address individual sub-tasks within DLA, including table/figure detection, text region detection, logical role classification, and reading order prediction. In this work, we propose an end-to-end transformer-based approach for document layout analysis, called DLAFormer, which integrates all these sub-tasks into a single model. To achieve this, we treat various DLA sub-tasks (such as text region detection, logical role classification, and reading order prediction) as relation prediction problems and consolidate these relation prediction labels into a unified label space, allowing a unified relation prediction module to handle multiple tasks concurrently. Additionally, we introduce a novel set of type-wise queries to enhance the physical meaning of content queries in DETR. Moreover, we adopt a coarse-to-fine strategy to accurately identify graphical page objects. Experimental results demonstrate that our proposed DLAFormer outperforms previous approaches that employ multi-branch or multi-stage architectures for multiple tasks on two document layout analysis benchmarks, DocLayNet and Comp-HRDoc.
Abstract:Recent research indicates that large language models (LLMs) are susceptible to jailbreaking attacks that can generate harmful content. This paper introduces a novel token-level attack method, Adaptive Dense-to-Sparse Constrained Optimization (ADC), which effectively jailbreaks several open-source LLMs. Our approach relaxes the discrete jailbreak optimization into a continuous optimization and progressively increases the sparsity of the optimizing vectors. Consequently, our method effectively bridges the gap between discrete and continuous space optimization. Experimental results demonstrate that our method is more effective and efficient than existing token-level methods. On Harmbench, our method achieves state of the art attack success rate on seven out of eight LLMs. Code will be made available. Trigger Warning: This paper contains model behavior that can be offensive in nature.
Abstract:Document structure analysis (aka document layout analysis) is crucial for understanding the physical layout and logical structure of documents, with applications in information retrieval, document summarization, knowledge extraction, etc. In this paper, we concentrate on Hierarchical Document Structure Analysis (HDSA) to explore hierarchical relationships within structured documents created using authoring software employing hierarchical schemas, such as LaTeX, Microsoft Word, and HTML. To comprehensively analyze hierarchical document structures, we propose a tree construction based approach that addresses multiple subtasks concurrently, including page object detection (Detect), reading order prediction of identified objects (Order), and the construction of intended hierarchical structure (Construct). We present an effective end-to-end solution based on this framework to demonstrate its performance. To assess our approach, we develop a comprehensive benchmark called Comp-HRDoc, which evaluates the above subtasks simultaneously. Our end-to-end system achieves state-of-the-art performance on two large-scale document layout analysis datasets (PubLayNet and DocLayNet), a high-quality hierarchical document structure reconstruction dataset (HRDoc), and our Comp-HRDoc benchmark. The Comp-HRDoc benchmark will be released to facilitate further research in this field.