Abstract:A unified autoregressive model is a Transformer-based framework that addresses diverse multimodal tasks (e.g., text, image, video) as a single sequence modeling problem under a shared token space. Such models rely on the KV-cache mechanism to reduce attention computation from O(T^2) to O(T); however, KV-cache size grows linearly with the number of generated tokens, and it rapidly becomes the dominant bottleneck limiting inference efficiency and generative length. Unified autoregressive video generation inherits this limitation. Our analysis reveals that KV-cache tokens exhibit distinct spatiotemporal properties: (i) text and conditioning-image tokens act as persistent semantic anchors that consistently receive high attention, and (ii) attention to previous frames naturally decays with temporal distance. Leveraging these observations, we introduce PackCache, a training-free KV-cache management method that dynamically compacts the KV cache through three coordinated mechanisms: condition anchoring that preserves semantic references, cross-frame decay modeling that allocates cache budget according to temporal distance, and spatially preserving position embedding that maintains coherent 3D structure under cache removal. In terms of efficiency, PackCache accelerates end-to-end generation by 1.7-2.2x on 48-frame long sequences, showcasing its strong potential for enabling longer-sequence video generation. Notably, the final four frames - the portion most impacted by the progressively expanding KV-cache and thus the most expensive segment of the clip - PackCache delivers a 2.6x and 3.7x acceleration on A40 and H200, respectively, for 48-frame videos.
Abstract:Clinical decision-making in oncology requires predicting dynamic disease evolution, a task current static AI predictors cannot perform. While world models (WMs) offer a paradigm for generative prediction, existing medical applications remain limited. Existing methods often rely on stochastic diffusion models, focusing on visual reconstruction rather than causal, physiological transitions. Furthermore, in medical domain, models like MeWM typically ignore patient-specific temporal and clinical contexts and lack a feedback mechanism to link predictions to treatment decisions. To address these gaps, we introduce CLARITY, a medical world model that forecasts disease evolution directly within a structured latent space. It explicitly integrates time intervals (temporal context) and patient-specific data (clinical context) to model treatment-conditioned progression as a smooth, interpretable trajectory, and thus generate physiologically faithful, individualized treatment plans. Finally, CLARITY introduces a novel prediction-to-decision framework, translating latent rollouts into transparent, actionable recommendations. CLARITY demonstrates state-of-the-art performance in treatment planning. On the MU-Glioma-Post dataset, our approach outperforms recent MeWM by 12\%, and significantly surpasses all other medical-specific large language models.
Abstract:We introduce a novel formulation of visual privacy preservation for video foundation models that operates entirely in the latent space. While spatio-temporal features learned by foundation models have deepened general understanding of video content, sharing or storing these extracted visual features for downstream tasks inadvertently reveals sensitive personal information like skin color, gender, or clothing. Current privacy preservation methods focus on input-pixel-level anonymization, which requires retraining the entire utility video model and results in task-specific anonymization, making them unsuitable for recent video foundational models. To address these challenges, we introduce a lightweight Anonymizing Adapter Module (AAM) that removes private information from video features while retaining general task utility. AAM can be applied in a plug-and-play fashion to frozen video encoders, minimizing the computational burden of finetuning and re-extracting features. Our framework employs three newly designed training objectives: (1) a clip-level self-supervised privacy objective to reduce mutual information between static clips, (2) a co-training objective to retain utility across seen tasks, and (3) a latent consistency loss for generalization on unseen tasks. Our extensive evaluations demonstrate a significant 35% reduction in privacy leakage while maintaining near-baseline utility performance across various downstream tasks: Action Recognition (Kinetics400, UCF101, HMDB51), Temporal Action Detection (THUMOS14), and Anomaly Detection (UCF-Crime). We also provide an analysis on anonymization for sensitive temporal attribute recognition. Additionally, we propose new protocols for assessing gender bias in action recognition models, showing that our method effectively mitigates such biases and promotes more equitable video understanding.
Abstract:LLMs have recently demonstrated strong potential in simulating online shopper behavior. Prior work has improved action prediction by applying SFT on action traces with LLM-generated rationales, and by leveraging RL to further enhance reasoning capabilities. Despite these advances, current approaches rely on text-based inputs and overlook the essential role of visual perception in shaping human decision-making during web GUI interactions. In this paper, we investigate the integration of visual information, specifically webpage screenshots, into behavior simulation via VLMs, leveraging OPeRA dataset. By grounding agent decision-making in both textual and visual modalities, we aim to narrow the gap between synthetic agents and real-world users, thereby enabling more cognitively aligned simulations of online shopping behavior. Specifically, we employ SFT for joint action prediction and rationale generation, conditioning on the full interaction context, which comprises action history, past HTML observations, and the current webpage screenshot. To further enhance reasoning capabilities, we integrate RL with a hierarchical reward structure, scaled by a difficulty-aware factor that prioritizes challenging decision points. Empirically, our studies show that incorporating visual grounding yields substantial gains: the combination of text and image inputs improves exact match accuracy by more than 6% over text-only inputs. These results indicate that multi-modal grounding not only boosts predictive accuracy but also enhances simulation fidelity in visually complex environments, which captures nuances of human attention and decision-making that text-only agents often miss. Finally, we revisit the design space of behavior simulation frameworks, identify key methodological limitations, and propose future research directions toward building efficient and effective human behavior simulators.
Abstract:Diffusion models excel at generating images conditioned on text prompts, but the resulting images often do not satisfy user-specific criteria measured by scalar rewards such as Aesthetic Scores. This alignment typically requires fine-tuning, which is computationally demanding. Recently, inference-time alignment via noise optimization has emerged as an efficient alternative, modifying initial input noise to steer the diffusion denoising process towards generating high-reward images. However, this approach suffers from reward hacking, where the model produces images that score highly, yet deviate significantly from the original prompt. We show that noise-space regularization is insufficient and that preventing reward hacking requires an explicit image-space constraint. To this end, we propose MIRA (MItigating Reward hAcking), a training-free, inference-time alignment method. MIRA introduces an image-space, score-based KL surrogate that regularizes the sampling trajectory with a frozen backbone, constraining the output distribution so reward can increase without off-distribution drift (reward hacking). We derive a tractable approximation to KL using diffusion scores. Across SDv1.5 and SDXL, multiple rewards (Aesthetic, HPSv2, PickScore), and public datasets (e.g., Animal-Animal, HPDv2), MIRA achieves >60\% win rate vs. strong baselines while preserving prompt adherence; mechanism plots show reward gains with near-zero drift, whereas DNO drifts as compute increases. We further introduce MIRA-DPO, mapping preference optimization to inference time with a frozen backbone, extending MIRA to non-differentiable rewards without fine-tuning.
Abstract:Video Large Language Models (VLMs) have achieved remarkable results on a variety of vision language tasks, yet their practical use is limited by the "needle in a haystack" problem: the massive number of visual tokens produced from raw video frames exhausts the model's context window. Existing solutions alleviate this issue by selecting a sparse set of frames, thereby reducing token count, but such frame-wise selection discards essential temporal dynamics, leading to suboptimal reasoning about motion and event continuity. In this work we systematically explore the impact of temporal information and demonstrate that extending selection from isolated key frames to key clips, which are short, temporally coherent segments, improves video understanding. To maintain a fixed computational budget while accommodating the larger token footprint of clips, we propose an adaptive resolution strategy that dynamically balances spatial resolution and clip length, ensuring a constant token count per video. Experiments on three long-form video benchmarks demonstrate that our training-free approach, F2C, outperforms uniform sampling up to 8.1%, 5.6%, and 10.3% on Video-MME, LongVideoBench and MLVU benchmarks, respectively. These results highlight the importance of preserving temporal coherence in frame selection and provide a practical pathway for scaling Video LLMs to real world video understanding applications. Project webpage is available at https://guangyusun.com/f2c .
Abstract:Employing a single, unified model (UM) for both visual understanding (image-to-text: I2T) and and visual generation (text-to-image: T2I) has opened a new direction in Visual Language Model (VLM) research. While UMs can also support broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the core cross-modal pair T2I and I2T, as consistency between understanding and generation is critical for downstream use. Existing evaluations consider these capabilities in isolation: FID and GenEval for T2I, and benchmarks such as MME, MMBench for I2T. These single-pass metrics do not reveal whether a model that understands a concept can also render it, nor whether meaning is preserved when cycling between image and text modalities. To address this, we introduce the Unified Consistency Framework for Unified Models (UCF-UM), a cyclic evaluation protocol that alternates I2T and T2I over multiple generations to quantify semantic drift. UCF formulates 3 metrics: (i) Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic loss; (ii) Semantic Drift Rate (SDR), that summarizes semantic decay rate; and (iii) Multi-Generation GenEval (MGG), an object-level compliance score extending GenEval. To assess generalization beyond COCO, which is widely used in training; we create a new benchmark ND400, sampled from NoCaps and DOCCI and evaluate on seven recent models. UCF-UM reveals substantial variation in cross-modal stability: some models like BAGEL maintain semantics over many alternations, whereas others like Vila-u drift quickly despite strong single-pass scores. Our results highlight cyclic consistency as a necessary complement to standard I2T and T2I evaluations, and provide practical metrics to consistently assess unified model's cross-modal stability and strength of their shared representations. Code: https://github.com/mollahsabbir/Semantic-Drift-in-Unified-Models
Abstract:Composed video retrieval is a challenging task that strives to retrieve a target video based on a query video and a textual description detailing specific modifications. Standard retrieval frameworks typically struggle to handle the complexity of fine-grained compositional queries and variations in temporal understanding limiting their retrieval ability in the fine-grained setting. To address this issue, we introduce a novel dataset that captures both fine-grained and composed actions across diverse video segments, enabling more detailed compositional changes in retrieved video content. The proposed dataset, named Dense-WebVid-CoVR, consists of 1.6 million samples with dense modification text that is around seven times more than its existing counterpart. We further develop a new model that integrates visual and textual information through Cross-Attention (CA) fusion using grounded text encoder, enabling precise alignment between dense query modifications and target videos. The proposed model achieves state-of-the-art results surpassing existing methods on all metrics. Notably, it achieves 71.3\% Recall@1 in visual+text setting and outperforms the state-of-the-art by 3.4\%, highlighting its efficacy in terms of leveraging detailed video descriptions and dense modification texts. Our proposed dataset, code, and model are available at :https://github.com/OmkarThawakar/BSE-CoVR
Abstract:To address the larger computation and storage requirements associated with large video datasets, video dataset distillation aims to capture spatial and temporal information in a significantly smaller dataset, such that training on the distilled data has comparable performance to training on all of the data. We propose GVD: Guiding Video Diffusion, the first diffusion-based video distillation method. GVD jointly distills spatial and temporal features, ensuring high-fidelity video generation across diverse actions while capturing essential motion information. Our method's diverse yet representative distillations significantly outperform previous state-of-the-art approaches on the MiniUCF and HMDB51 datasets across 5, 10, and 20 Instances Per Class (IPC). Specifically, our method achieves 78.29 percent of the original dataset's performance using only 1.98 percent of the total number of frames in MiniUCF. Additionally, it reaches 73.83 percent of the performance with just 3.30 percent of the frames in HMDB51. Experimental results across benchmark video datasets demonstrate that GVD not only achieves state-of-the-art performance but can also generate higher resolution videos and higher IPC without significantly increasing computational cost.




Abstract:Recent advances in Generative AI (GenAI) have led to significant improvements in the quality of generated visual content. As AI-generated visual content becomes increasingly indistinguishable from real content, the challenge of detecting the generated content becomes critical in combating misinformation, ensuring privacy, and preventing security threats. Although there has been substantial progress in detecting AI-generated images, current methods for video detection are largely focused on deepfakes, which primarily involve human faces. However, the field of video generation has advanced beyond DeepFakes, creating an urgent need for methods capable of detecting AI-generated videos with generic content. To address this gap, we propose a novel approach that leverages pre-trained visual models to distinguish between real and generated videos. The features extracted from these pre-trained models, which have been trained on extensive real visual content, contain inherent signals that can help distinguish real from generated videos. Using these extracted features, we achieve high detection performance without requiring additional model training, and we further improve performance by training a simple linear classification layer on top of the extracted features. We validated our method on a dataset we compiled (VID-AID), which includes around 10,000 AI-generated videos produced by 9 different text-to-video models, along with 4,000 real videos, totaling over 7 hours of video content. Our evaluation shows that our approach achieves high detection accuracy, above 90% on average, underscoring its effectiveness. Upon acceptance, we plan to publicly release the code, the pre-trained models, and our dataset to support ongoing research in this critical area.