Abstract:Disfluencies are a natural feature of spontaneous human speech but are typically absent from the outputs of Large Language Models (LLMs). This absence can diminish the perceived naturalness of synthesized speech, which is an important criteria when building conversational agents that aim to mimick human behaviours. We show how the insertion of disfluencies can alleviate this shortcoming. The proposed approach involves (1) fine-tuning an LLM with Low-Rank Adaptation (LoRA) to incorporate various types of disfluencies into LLM-generated utterances and (2) synthesizing those utterances using a text-to-speech model that supports the generation of speech phenomena such as disfluencies. We evaluated the quality of the generated speech across two metrics: intelligibility and perceived spontaneity. We demonstrate through a user study that the insertion of disfluencies significantly increase the perceived spontaneity of the generated speech. This increase came, however, along with a slight reduction in intelligibility.
Abstract:Healthcare time series data is vital for monitoring patient activity but often contains noise and missing values due to various reasons such as sensor errors or data interruptions. Imputation, i.e., filling in the missing values, is a common way to deal with this issue. In this study, we compare imputation methods, including Multiple Imputation with Random Forest (MICE-RF) and advanced deep learning approaches (SAITS, BRITS, Transformer) for noisy, missing time series data in terms of MAE, F1-score, AUC, and MCC, across missing data rates (10 % - 80 %). Our results show that MICE-RF can effectively impute missing data compared to deep learning methods and the improvement in classification of data imputed indicates that imputation can have denoising effects. Therefore, using an imputation algorithm on time series with missing data can, at the same time, offer denoising effects.
Abstract:This paper examines the integration of real-time talking-head generation for interviewer training, focusing on overcoming challenges in Audio Feature Extraction (AFE), which often introduces latency and limits responsiveness in real-time applications. To address these issues, we propose and implement a fully integrated system that replaces conventional AFE models with Open AI's Whisper, leveraging its encoder to optimize processing and improve overall system efficiency. Our evaluation of two open-source real-time models across three different datasets shows that Whisper not only accelerates processing but also improves specific aspects of rendering quality, resulting in more realistic and responsive talking-head interactions. These advancements make the system a more effective tool for immersive, interactive training applications, expanding the potential of AI-driven avatars in interviewer training.
Abstract:Extracting meaningful insights from large and complex datasets poses significant challenges, particularly in ensuring the accuracy and relevance of retrieved information. Traditional data retrieval methods such as sequential search and index-based retrieval often fail when handling intricate and interconnected data structures, resulting in incomplete or misleading outputs. To overcome these limitations, we introduce Structured-GraphRAG, a versatile framework designed to enhance information retrieval across structured datasets in natural language queries. Structured-GraphRAG utilizes multiple knowledge graphs, which represent data in a structured format and capture complex relationships between entities, enabling a more nuanced and comprehensive retrieval of information. This graph-based approach reduces the risk of errors in language model outputs by grounding responses in a structured format, thereby enhancing the reliability of results. We demonstrate the effectiveness of Structured-GraphRAG by comparing its performance with that of a recently published method using traditional retrieval-augmented generation. Our findings show that Structured-GraphRAG significantly improves query processing efficiency and reduces response times. While our case study focuses on soccer data, the framework's design is broadly applicable, offering a powerful tool for data analysis and enhancing language model applications across various structured domains.
Abstract:We introduce Kvasir-VQA, an extended dataset derived from the HyperKvasir and Kvasir-Instrument datasets, augmented with question-and-answer annotations to facilitate advanced machine learning tasks in Gastrointestinal (GI) diagnostics. This dataset comprises 6,500 annotated images spanning various GI tract conditions and surgical instruments, and it supports multiple question types including yes/no, choice, location, and numerical count. The dataset is intended for applications such as image captioning, Visual Question Answering (VQA), text-based generation of synthetic medical images, object detection, and classification. Our experiments demonstrate the dataset's effectiveness in training models for three selected tasks, showcasing significant applications in medical image analysis and diagnostics. We also present evaluation metrics for each task, highlighting the usability and versatility of our dataset. The dataset and supporting artifacts are available at https://datasets.simula.no/kvasir-vqa.
Abstract:In the rapidly evolving field of sports analytics, the automation of targeted video processing is a pivotal advancement. We propose PlayerTV, an innovative framework which harnesses state-of-the-art AI technologies for automatic player tracking and identification in soccer videos. By integrating object detection and tracking, Optical Character Recognition (OCR), and color analysis, PlayerTV facilitates the generation of player-specific highlight clips from extensive game footage, significantly reducing the manual labor traditionally associated with such tasks. Preliminary results from the evaluation of our core pipeline, tested on a dataset from the Norwegian Eliteserien league, indicate that PlayerTV can accurately and efficiently identify teams and players, and our interactive Graphical User Interface (GUI) serves as a user-friendly application wrapping this functionality for streamlined use.
Abstract:The rapid evolution of digital sports media necessitates sophisticated information retrieval systems that can efficiently parse extensive multimodal datasets. This paper introduces SoccerRAG, an innovative framework designed to harness the power of Retrieval Augmented Generation (RAG) and Large Language Models (LLMs) to extract soccer-related information through natural language queries. By leveraging a multimodal dataset, SoccerRAG supports dynamic querying and automatic data validation, enhancing user interaction and accessibility to sports archives. Our evaluations indicate that SoccerRAG effectively handles complex queries, offering significant improvements over traditional retrieval systems in terms of accuracy and user engagement. The results underscore the potential of using RAG and LLMs in sports analytics, paving the way for future advancements in the accessibility and real-time processing of sports data.
Abstract:The rapid evolution of digital sports media necessitates sophisticated information retrieval systems that can efficiently parse extensive multimodal datasets. This paper demonstrates SoccerRAG, an innovative framework designed to harness the power of Retrieval Augmented Generation (RAG) and Large Language Models (LLMs) to extract soccer-related information through natural language queries. By leveraging a multimodal dataset, SoccerRAG supports dynamic querying and automatic data validation, enhancing user interaction and accessibility to sports archives. We present a novel interactive user interface (UI) based on the Chainlit framework which wraps around the core functionality, and enable users to interact with the SoccerRAG framework in a chatbot-like visual manner.
Abstract:The application of Automatic Speech Recognition (ASR) technology in soccer offers numerous opportunities for sports analytics. Specifically, extracting audio commentaries with ASR provides valuable insights into the events of the game, and opens the door to several downstream applications such as automatic highlight generation. This paper presents SoccerNet-Echoes, an augmentation of the SoccerNet dataset with automatically generated transcriptions of audio commentaries from soccer game broadcasts, enhancing video content with rich layers of textual information derived from the game audio using ASR. These textual commentaries, generated using the Whisper model and translated with Google Translate, extend the usefulness of the SoccerNet dataset in diverse applications such as enhanced action spotting, automatic caption generation, and game summarization. By incorporating textual data alongside visual and auditory content, SoccerNet-Echoes aims to serve as a comprehensive resource for the development of algorithms specialized in capturing the dynamics of soccer games. We detail the methods involved in the curation of this dataset and the integration of ASR. We also highlight the implications of a multimodal approach in sports analytics, and how the enriched dataset can support diverse applications, thus broadening the scope of research and development in the field of sports analytics.
Abstract:Understanding sleep and activity patterns plays a crucial role in physical and mental health. This study introduces a novel approach for sleep detection using weakly supervised learning for scenarios where reliable ground truth labels are unavailable. The proposed method relies on a set of weak labels, derived from the predictions generated by conventional sleep detection algorithms. Introducing a novel approach, we suggest a novel generalised non-linear statistical model in which the number of weak sleep labels is modelled as outcome of a binomial distribution. The probability of sleep in the binomial distribution is linked to the outcomes of neural networks trained to detect sleep based on actigraphy. We show that maximizing the likelihood function of the model, is equivalent to minimizing the soft cross-entropy loss. Additionally, we explored the use of the Brier score as a loss function for weak labels. The efficacy of the suggested modelling framework was demonstrated using the Multi-Ethnic Study of Atherosclerosis dataset. A \gls{lstm} trained on the soft cross-entropy outperformed conventional sleep detection algorithms, other neural network architectures and loss functions in accuracy and model calibration. This research not only advances sleep detection techniques in scenarios where ground truth data is scarce but also contributes to the broader field of weakly supervised learning by introducing innovative approach in modelling sets of weak labels.