Abstract:As Artificial Intelligence (AI) models are gradually being adopted in real-life applications, the explainability of the model used is critical, especially in high-stakes areas such as medicine, finance, etc. Among the commonly used models, Linear Discriminant Analysis (LDA) is a widely used classification tool that is also explainable thanks to its ability to model class distributions and maximize class separation through linear feature combinations. Nevertheless, real-world data is frequently incomplete, presenting significant challenges for classification tasks and model explanations. In this paper, we propose a novel approach to LDA under missing data, termed \textbf{\textit{Weighted missing Linear Discriminant Analysis (WLDA)}}, to directly classify observations in data that contains missing values without imputation effectively by estimating the parameters directly on missing data and use a weight matrix for missing values to penalize missing entries during classification. Furthermore, we also analyze the theoretical properties and examine the explainability of the proposed technique in a comprehensive manner. Experimental results demonstrate that WLDA outperforms conventional methods by a significant margin, particularly in scenarios where missing values are present in both training and test sets.