Abstract:Missing data is common in datasets retrieved in various areas, such as medicine, sports, and finance. In many cases, to enable proper and reliable analyses of such data, the missing values are often imputed, and it is necessary that the method used has a low root mean square error (RMSE) between the imputed and the true values. In addition, for some critical applications, it is also often a requirement that the logic behind the imputation is explainable, which is especially difficult for complex methods that are for example, based on deep learning. This motivates us to introduce a conditional Distribution based Imputation of Missing Values (DIMV) algorithm. This approach works based on finding the conditional distribution of a feature with missing entries based on the fully observed features. As will be illustrated in the paper, DIMV (i) gives a low RMSE for the imputed values compared to state-of-the-art methods under comparison; (ii) is explainable; (iii) can provide an approximated confidence region for the missing values in a given sample; (iv) works for both small and large scale data; (v) in many scenarios, does not require a huge number of parameters as deep learning approaches and therefore can be used for mobile devices or web browsers; and (vi) is robust to the normally distributed assumption that its theoretical grounds rely on. In addition to DIMV, we also introduce the DPER* algorithm improving the speed of DPER for estimating the mean and covariance matrix from the data, and we confirm the speed-up via experiments.
Abstract:For many use cases, combining information from different datasets can be of interest to improve a machine learning model's performance, especially when the number of samples from at least one of the datasets is small. However, a potential challenge in such cases is that the features from these datasets are not identical, even though there are some commonly shared features among the datasets. To tackle this challenge, we propose a novel framework called Combine datasets based on Imputation (ComImp). In addition, we propose a variant of ComImp that uses Principle Component Analysis (PCA), PCA-ComImp in order to reduce dimension before combining datasets. This is useful when the datasets have a large number of features that are not shared between them. Furthermore, our framework can also be utilized for data preprocessing by imputing missing data, i.e., filling in the missing entries while combining different datasets. To illustrate the power of the proposed methods and their potential usages, we conduct experiments for various tasks: regression, classification, and for different data types: tabular data, time series data, when the datasets to be combined have missing data. We also investigate how the devised methods can be used with transfer learning to provide even further model training improvement. Our results indicate that the proposed methods are somewhat similar to transfer learning in that the merge can significantly improve the accuracy of a prediction model on smaller datasets. In addition, the methods can boost performance by a significant margin when combining small datasets together and can provide extra improvement when being used with transfer learning.
Abstract:Public sources like parliament meeting recordings and transcripts provide ever-growing material for the training and evaluation of automatic speech recognition (ASR) systems. In this paper, we publish and analyse the Finnish parliament ASR corpus, the largest publicly available collection of manually transcribed speech data for Finnish with over 3000 hours of speech and 449 speakers for which it provides rich demographic metadata. This corpus builds on earlier initial work, and as a result the corpus has a natural split into two training subsets from two periods of time. Similarly, there are two official, corrected test sets covering different times, setting an ASR task with longitudinal distribution-shift characteristics. An official development set is also provided. We develop a complete Kaldi-based data preparation pipeline, and hidden Markov model (HMM), hybrid deep neural network (HMM-DNN) and attention-based encoder-decoder (AED) ASR recipes. We set benchmarks on the official test sets, as well as multiple other recently used test sets. Both temporal corpus subsets are already large, and we observe that beyond their scale, ASR performance on the official test sets plateaus, whereas other domains benefit from added data. The HMM-DNN and AED approaches are compared in a carefully matched equal data setting, with the HMM-DNN system consistently performing better. Finally, the variation of the ASR accuracy is compared between the speaker categories available in the parliament metadata to detect potential biases based on factors such as gender, age, and education.