Abstract:3D semantic scene completion is critical for multiple downstream tasks in autonomous systems. It estimates missing geometric and semantic information in the acquired scene data. Due to the challenging real-world conditions, this task usually demands complex models that process multi-modal data to achieve acceptable performance. We propose a unique neural model, leveraging advances from the state space and diffusion generative modeling to achieve remarkable 3D semantic scene completion performance with monocular image input. Our technique processes the data in the conditioned latent space of a variational autoencoder where diffusion modeling is carried out with an innovative state space technique. A key component of our neural network is the proposed Skimba (Skip Mamba) denoiser, which is adept at efficiently processing long-sequence data. The Skimba diffusion model is integral to our 3D scene completion network, incorporating a triple Mamba structure, dimensional decomposition residuals and varying dilations along three directions. We also adopt a variant of this network for the subsequent semantic segmentation stage of our method. Extensive evaluation on the standard SemanticKITTI and SSCBench-KITTI360 datasets show that our approach not only outperforms other monocular techniques by a large margin, it also achieves competitive performance against stereo methods. The code is available at https://github.com/xrkong/skimba
Abstract:Data augmentation is widely used to enhance generalization in visual classification tasks. However, traditional methods struggle when source and target domains differ, as in domain adaptation, due to their inability to address domain gaps. This paper introduces GenMix, a generalizable prompt-guided generative data augmentation approach that enhances both in-domain and cross-domain image classification. Our technique leverages image editing to generate augmented images based on custom conditional prompts, designed specifically for each problem type. By blending portions of the input image with its edited generative counterpart and incorporating fractal patterns, our approach mitigates unrealistic images and label ambiguity, improving the performance and adversarial robustness of the resulting models. Efficacy of our method is established with extensive experiments on eight public datasets for general and fine-grained classification, in both in-domain and cross-domain settings. Additionally, we demonstrate performance improvements for self-supervised learning, learning with data scarcity, and adversarial robustness. As compared to the existing state-of-the-art methods, our technique achieves stronger performance across the board.
Abstract:The widespread availability of multimodal generative models has sparked critical discussions on their fairness, reliability, and potential for misuse. While text-to-image models can produce high-fidelity, user-guided images, they also exhibit unpredictable behavior and vulnerabilities, which can be exploited to manipulate class or concept representations. To address this, we propose an evaluation framework designed to assess model reliability through their responses to globally- and locally-applied `semantic' perturbations in the embedding space, pinpointing inputs that trigger unreliable behavior. Our approach offers deeper insights into two essential aspects: (i) generative diversity, evaluating the breadth of visual representations for learned concepts, and (ii) generative fairness, examining how removing concepts from input prompts affects semantic guidance. Beyond these evaluations, our method lays the groundwork for detecting unreliable, bias-injected models and retrieval of bias provenance. We will release our code. Keywords: Fairness, Reliability, AI Ethics, Bias, Text-to-Image Models
Abstract:Training multimodal generative models on large, uncurated datasets can result in users being exposed to harmful, unsafe and controversial or culturally-inappropriate outputs. While model editing has been proposed to remove or filter undesirable concepts in embedding and latent spaces, it can inadvertently damage learned manifolds, distorting concepts in close semantic proximity. We identify limitations in current model editing techniques, showing that even benign, proximal concepts may become misaligned. To address the need for safe content generation, we propose a modular, dynamic solution that leverages safety-context embeddings and a dual reconstruction process using tunable weighted summation in the latent space to generate safer images. Our method preserves global context without compromising the structural integrity of the learned manifolds. We achieve state-of-the-art results on safe image generation benchmarks, while offering controllable variation of model safety. We identify trade-offs between safety and censorship, which presents a necessary perspective in the development of ethical AI models. We will release our code. Keywords: Text-to-Image Models, Generative AI, Safety, Reliability, Model Editing
Abstract:Image restoration and spectral reconstruction are longstanding computer vision tasks. Currently, CNN-transformer hybrid models provide state-of-the-art performance for these tasks. The key common ingredient in the architectural designs of these models is Channel-wise Self-Attention (CSA). We first show that CSA is an overall low-rank operation. Then, we propose an instance-Guided Low-rank Multi-Head selfattention (GLMHA) to replace the CSA for a considerable computational gain while closely retaining the original model performance. Unique to the proposed GLMHA is its ability to provide computational gain for both short and long input sequences. In particular, the gain is in terms of both Floating Point Operations (FLOPs) and parameter count reduction. This is in contrast to the existing popular computational complexity reduction techniques, e.g., Linformer, Performer, and Reformer, for whom FLOPs overpower the efficient design tricks for the shorter input sequences. Moreover, parameter reduction remains unaccounted for in the existing methods.We perform an extensive evaluation for the tasks of spectral reconstruction from RGB images, spectral reconstruction from snapshot compressive imaging, motion deblurring, and image deraining by enhancing the best-performing models with our GLMHA. Our results show up to a 7.7 Giga FLOPs reduction with 370K fewer parameters required to closely retain the original performance of the best-performing models that employ CSA.
Abstract:Trustworthy machine learning necessitates meticulous regulation of model reliance on non-robust features. We propose a framework to delineate and regulate such features by attributing model predictions to the input. Within our approach, robust feature attributions exhibit a certain consistency, while non-robust feature attributions are susceptible to fluctuations. This behavior allows identification of correlation between model reliance on non-robust features and smoothness of marginal density of the input samples. Hence, we uniquely regularize the gradients of the marginal density w.r.t. the input features for robustness. We also devise an efficient implementation of our regularization to address the potential numerical instability of the underlying optimization process. Moreover, we analytically reveal that, as opposed to our marginal density smoothing, the prevalent input gradient regularization smoothens conditional or joint density of the input, which can cause limited robustness. Our experiments validate the effectiveness of the proposed method, providing clear evidence of its capability to address the feature leakage problem and mitigate spurious correlations. Extensive results further establish that our technique enables the model to exhibit robustness against perturbations in pixel values, input gradients, and density.
Abstract:Kolmogorov-Arnold Networks (KANs) introduce a paradigm of neural modeling that implements learnable functions on the edges of the networks, diverging from the traditional node-centric activations in neural networks. This work assesses the applicability and efficacy of KANs in visual modeling, focusing on the image recognition task. We mainly analyze the performance and efficiency of different network architectures built using KAN concepts along with conventional building blocks of convolutional and linear layers, enabling a comparative analysis with the conventional models. Our findings are aimed at contributing to understanding the potential of KANs in computer vision, highlighting both their strengths and areas for further research. Our evaluation shows that whereas KAN-based architectures perform in-line with the original claims of KAN paper for performance and model-complexity in the case of simpler vision datasets like MNIST, the advantages seem to diminish even for slightly more complex datasets like CIFAR-10.
Abstract:Attribution methods compute importance scores for input features to explain the output predictions of deep models. However, accurate assessment of attribution methods is challenged by the lack of benchmark fidelity for attributing model predictions. Moreover, other confounding factors in attribution estimation, including the setup choices of post-processing techniques and explained model predictions, further compromise the reliability of the evaluation. In this work, we first identify a set of fidelity criteria that reliable benchmarks for attribution methods are expected to fulfill, thereby facilitating a systematic assessment of attribution benchmarks. Next, we introduce a Backdoor-based eXplainable AI benchmark (BackX) that adheres to the desired fidelity criteria. We theoretically establish the superiority of our approach over the existing benchmarks for well-founded attribution evaluation. With extensive analysis, we also identify a setup for a consistent and fair benchmarking of attribution methods across different underlying methodologies. This setup is ultimately employed for a comprehensive comparison of existing methods using our BackX benchmark. Finally, our analysis also provides guidance for defending against backdoor attacks with the help of attribution methods.
Abstract:Text-to-image (T2I) generative models are gaining wide popularity, especially in public domains. However, their intrinsic bias and potential malicious manipulations remain under-explored. Charting the susceptibility of T2I models to such manipulation, we first expose the new possibility of a dynamic and computationally efficient exploitation of model bias by targeting the embedded language models. By leveraging mathematical foundations of vector algebra, our technique enables a scalable and convenient control over the severity of output manipulation through model bias. As a by-product, this control also allows a form of precise prompt engineering to generate images which are generally implausible with regular text prompts. We also demonstrate a constructive application of our manipulation for balancing the frequency of generated classes - as in model debiasing. Our technique does not require training and is also framed as a backdoor attack with severity control using semantically-null text triggers in the prompts. With extensive analysis, we present interesting qualitative and quantitative results to expose potential manipulation possibilities for T2I models. Key-words: Text-to-Image Models, Generative Models, Backdoor Attacks, Prompt Engineering, Bias
Abstract:Infrared image destriping seeks to restore high-quality content from degraded images. Recent works mainly address this task by leveraging prior knowledge to separate stripe noise from the degraded image. However, constructing a robust decoupling model for that purpose remains challenging, especially when significant similarities exist between the stripe noise and vertical background structure. Addressing that, we introduce Asymmetric Residual wavelet Column correction Network (ARCNet) for image destriping, aiming to consistently preserve spatially precise high-resolution representations. Our neural model leverages a novel downsampler, residual haar discrete wavelet transform (RHDWT), stripe directional prior knowledge and data-driven learning to induce a model with enriched feature representation of stripe noise and background. In our technique, the inverse wavelet transform is replaced by transposed convolution for feature upsampling, which can suppress noise crosstalk and encourage the network to focus on robust image reconstruction. After each sampling, a proposed column non-uniformity correction module (CNCM) is leveraged by our method to enhance column uniformity, spatial correlation, and global self-dependence between each layer component. CNCM can establish structural characteristics of stripe noise and utilize contextual information at long-range dependencies to distinguish stripes with varying intensities and distributions. Extensive experiments on synthetic data, real data, and infrared small target detection tasks show that the proposed method outperforms state-of-the-art single-image destriping methods both visually and quantitatively by a considerable margin. Our code will be made publicly available at \url{https://github.com/xdFai}.