Abstract:In this paper, we introduce Motion-Grounded Video Reasoning, a new motion understanding task that requires generating visual answers (video segmentation masks) according to the input question, and hence needs implicit spatiotemporal reasoning and grounding. This task extends existing spatiotemporal grounding work focusing on explicit action/motion grounding, to a more general format by enabling implicit reasoning via questions. To facilitate the development of the new task, we collect a large-scale dataset called GROUNDMORE, which comprises 1,715 video clips, 249K object masks that are deliberately designed with 4 question types (Causal, Sequential, Counterfactual, and Descriptive) for benchmarking deep and comprehensive motion reasoning abilities. GROUNDMORE uniquely requires models to generate visual answers, providing a more concrete and visually interpretable response than plain texts. It evaluates models on both spatiotemporal grounding and reasoning, fostering to address complex challenges in motion-related video reasoning, temporal perception, and pixel-level understanding. Furthermore, we introduce a novel baseline model named Motion-Grounded Video Reasoning Assistant (MORA). MORA incorporates the multimodal reasoning ability from the Multimodal LLM, the pixel-level perception capability from the grounding model (SAM), and the temporal perception ability from a lightweight localization head. MORA achieves respectable performance on GROUNDMORE outperforming the best existing visual grounding baseline model by an average of 21.5% relatively. We hope this novel and challenging task will pave the way for future advancements in robust and general motion understanding via video reasoning segmentation
Abstract:Language based editing of 3D human avatars to precisely match user requirements is challenging due to the inherent ambiguity and limited expressiveness of natural language. To overcome this, we propose the Avatar Concept Slider (ACS), a 3D avatar editing method that allows precise manipulation of semantic concepts in human avatars towards a specified intermediate point between two extremes of concepts, akin to moving a knob along a slider track. To achieve this, our ACS has three designs. 1) A Concept Sliding Loss based on Linear Discriminant Analysis to pinpoint the concept-specific axis for precise editing. 2) An Attribute Preserving Loss based on Principal Component Analysis for improved preservation of avatar identity during editing. 3) A 3D Gaussian Splatting primitive selection mechanism based on concept-sensitivity, which updates only the primitives that are the most sensitive to our target concept, to improve efficiency. Results demonstrate that our ACS enables fine-grained 3D avatar editing with efficient feedback, without harming the avatar quality or compromising the avatar's identifying attributes.
Abstract:Fully-supervised category-level pose estimation aims to determine the 6-DoF poses of unseen instances from known categories, requiring expensive mannual labeling costs. Recently, various self-supervised category-level pose estimation methods have been proposed to reduce the requirement of the annotated datasets. However, most methods rely on synthetic data or 3D CAD model for self-supervised training, and they are typically limited to addressing single-object pose problems without considering multi-objective tasks or shape reconstruction. To overcome these challenges and limitations, we introduce a diffusion-driven self-supervised network for multi-object shape reconstruction and categorical pose estimation, only leveraging the shape priors. Specifically, to capture the SE(3)-equivariant pose features and 3D scale-invariant shape information, we present a Prior-Aware Pyramid 3D Point Transformer in our network. This module adopts a point convolutional layer with radial-kernels for pose-aware learning and a 3D scale-invariant graph convolution layer for object-level shape representation, respectively. Furthermore, we introduce a pretrain-to-refine self-supervised training paradigm to train our network. It enables proposed network to capture the associations between shape priors and observations, addressing the challenge of intra-class shape variations by utilising the diffusion mechanism. Extensive experiments conducted on four public datasets and a self-built dataset demonstrate that our method significantly outperforms state-of-the-art self-supervised category-level baselines and even surpasses some fully-supervised instance-level and category-level methods.
Abstract:Multiple object detection and pose estimation are vital computer vision tasks. The latter relates to the former as a downstream problem in applications such as robotics and autonomous driving. However, due to the high complexity of both tasks, existing methods generally treat them independently, which is sub-optimal. We propose simultaneous neural modeling of both using monocular vision and 3D model infusion. Our Simultaneous Multiple Object detection and Pose Estimation network (SMOPE-Net) is an end-to-end trainable multitasking network with a composite loss that also provides the advantages of anchor-free detections for efficient downstream pose estimation. To enable the annotation of training data for our learning objective, we develop a Twin-Space object labeling method and demonstrate its correctness analytically and empirically. Using the labeling method, we provide the KITTI-6DoF dataset with $\sim7.5$K annotated frames. Extensive experiments on KITTI-6DoF and the popular LineMod datasets show a consistent performance gain with SMOPE-Net over existing pose estimation methods. Here are links to our proposed SMOPE-Net, KITTI-6DoF dataset, and LabelImg3D labeling tool.
Abstract:Although response generation (RG) diversification for single-turn dialogs has been well developed, it is less investigated for natural multi-turn conversations. Besides, past work focused on diversifying responses without considering topic coherence to the context, producing uninformative replies. In this paper, we propose the Topic-coherent Hierarchical Recurrent Encoder-Decoder model (THRED) to diversify the generated responses without deviating the contextual topics for multi-turn conversations. In overall, we build a sequence-to-sequence net (Seq2Seq) to model multi-turn conversations. And then we resort to the latent Variable Hierarchical Recurrent Encoder-Decoder model (VHRED) to learn global contextual distribution of dialogs. Besides, we construct a dense topic matrix which implies word-level correlations of the conversation corpora. The topic matrix is used to learn local topic distribution of the contextual utterances. By incorporating both the global contextual distribution and the local topic distribution, THRED produces both diversified and topic-coherent replies. In addition, we propose an explicit metric (\emph{TopicDiv}) to measure the topic divergence between the post and generated response, and we also propose an overall metric combining the diversification metric (\emph{Distinct}) and \emph{TopicDiv}. We evaluate our model comparing with three baselines (Seq2Seq, HRED and VHRED) on two real-world corpora, respectively, and demonstrate its outstanding performance in both diversification and topic coherence.