Abstract:Fully-supervised category-level pose estimation aims to determine the 6-DoF poses of unseen instances from known categories, requiring expensive mannual labeling costs. Recently, various self-supervised category-level pose estimation methods have been proposed to reduce the requirement of the annotated datasets. However, most methods rely on synthetic data or 3D CAD model for self-supervised training, and they are typically limited to addressing single-object pose problems without considering multi-objective tasks or shape reconstruction. To overcome these challenges and limitations, we introduce a diffusion-driven self-supervised network for multi-object shape reconstruction and categorical pose estimation, only leveraging the shape priors. Specifically, to capture the SE(3)-equivariant pose features and 3D scale-invariant shape information, we present a Prior-Aware Pyramid 3D Point Transformer in our network. This module adopts a point convolutional layer with radial-kernels for pose-aware learning and a 3D scale-invariant graph convolution layer for object-level shape representation, respectively. Furthermore, we introduce a pretrain-to-refine self-supervised training paradigm to train our network. It enables proposed network to capture the associations between shape priors and observations, addressing the challenge of intra-class shape variations by utilising the diffusion mechanism. Extensive experiments conducted on four public datasets and a self-built dataset demonstrate that our method significantly outperforms state-of-the-art self-supervised category-level baselines and even surpasses some fully-supervised instance-level and category-level methods.
Abstract:Tracking the object 6-DoF pose is crucial for various downstream robot tasks and real-world applications. In this paper, we investigate the real-world robot task of aerial vision guidance for aerial robotics manipulation, utilizing category-level 6-DoF pose tracking. Aerial conditions inevitably introduce special challenges, such as rapid viewpoint changes in pitch and roll and inter-frame differences. To support these challenges in task, we firstly introduce a robust category-level 6-DoF pose tracker (Robust6DoF). This tracker leverages shape and temporal prior knowledge to explore optimal inter-frame keypoint pairs, generated under a priori structural adaptive supervision in a coarse-to-fine manner. Notably, our Robust6DoF employs a Spatial-Temporal Augmentation module to deal with the problems of the inter-frame differences and intra-class shape variations through both temporal dynamic filtering and shape-similarity filtering. We further present a Pose-Aware Discrete Servo strategy (PAD-Servo), serving as a decoupling approach to implement the final aerial vision guidance task. It contains two servo action policies to better accommodate the structural properties of aerial robotics manipulation. Exhaustive experiments on four well-known public benchmarks demonstrate the superiority of our Robust6DoF. Real-world tests directly verify that our Robust6DoF along with PAD-Servo can be readily used in real-world aerial robotic applications.