Abstract:In recent years, infrastructure-based localization methods have achieved significant progress thanks to their reliable and drift-free localization capability. However, the pre-installed infrastructures suffer from inflexibilities and high maintenance costs. This poses an interesting problem of how to develop a drift-free localization system without using the pre-installed infrastructures. In this paper, an infrastructure-free and drift-free localization system is proposed using the ambient magnetic field (MF) information, namely IDF-MFL. IDF-MFL is infrastructure-free thanks to the high distinctiveness of the ambient MF information produced by inherent ferromagnetic objects in the environment, such as steel and reinforced concrete structures of buildings, and underground pipelines. The MF-based localization problem is defined as a stochastic optimization problem with the consideration of the non-Gaussian heavy-tailed noise introduced by MF measurement outliers (caused by dynamic ferromagnetic objects), and an outlier-robust state estimation algorithm is derived to find the optimal distribution of robot state that makes the expectation of MF matching cost achieves its lower bound. The proposed method is evaluated in multiple scenarios, including experiments on high-fidelity simulation, and real-world environments. The results demonstrate that the proposed method can achieve high-accuracy, reliable, and real-time localization without any pre-installed infrastructures.
Abstract:Unsupervised Domain Adaptation (UDA) aims to adapt a model trained on a labeled source domain to an unlabeled target domain by addressing the domain shift. Existing Unsupervised Domain Adaptation (UDA) methods often fall short in fully leveraging contextual information from the target domain, leading to suboptimal decision boundary separation during source and target domain alignment. To address this, we introduce GrabDAE, an innovative UDA framework designed to tackle domain shift in visual classification tasks. GrabDAE incorporates two key innovations: the Grab-Mask module, which blurs background information in target domain images, enabling the model to focus on essential, domain-relevant features through contrastive learning; and the Denoising Auto-Encoder (DAE), which enhances feature alignment by reconstructing features and filtering noise, ensuring a more robust adaptation to the target domain. These components empower GrabDAE to effectively handle unlabeled target domain data, significantly improving both classification accuracy and robustness. Extensive experiments on benchmark datasets, including VisDA-2017, Office-Home, and Office31, demonstrate that GrabDAE consistently surpasses state-of-the-art UDA methods, setting new performance benchmarks. By tackling UDA's critical challenges with its novel feature masking and denoising approach, GrabDAE offers both significant theoretical and practical advancements in domain adaptation.
Abstract:In recent years, LiDAR-based localization and mapping methods have achieved significant progress thanks to their reliable and real-time localization capability. Considering single LiDAR odometry often faces hardware failures and degradation in practical scenarios, Multi-LiDAR Odometry (MLO), as an emerging technology, is studied to enhance the performance of LiDAR-based localization and mapping systems. However, MLO can suffer from high computational complexity introduced by dense point clouds that are fused from multiple LiDARs, and the continuous-time measurement characteristic is constantly neglected by existing LiDAR odometry. This motivates us to develop a Continuous-Time and Efficient MLO, namely CTE-MLO, which can achieve accurate and real-time state estimation using multi-LiDAR measurements through a continuous-time perspective. In this paper, the Gaussian process estimation is naturally combined with the Kalman filter, which enables each LiDAR point in a point stream to query the corresponding continuous-time trajectory within its time instants. A decentralized multi-LiDAR synchronization scheme also be devised to combine points from separate LiDARs into a single point cloud without the requirement for primary LiDAR assignment. Moreover, with the aim of improving the real-time performance of MLO without sacrificing robustness, a point cloud sampling strategy is designed with the consideration of localizability. The effectiveness of the proposed method is demonstrated through various scenarios, including public datasets and real-world autonomous driving experiments. The results demonstrate that the proposed CTE-MLO can achieve high-accuracy continuous-time state estimations in real-time and is demonstratively competitive compared to other state-of-the-art methods.
Abstract:Dense scene reconstruction for photo-realistic view synthesis has various applications, such as VR/AR, autonomous vehicles. However, most existing methods have difficulties in large-scale scenes due to three core challenges: \textit{(a) inaccurate depth input.} Accurate depth input is impossible to get in real-world large-scale scenes. \textit{(b) inaccurate pose estimation.} Most existing approaches rely on accurate pre-estimated camera poses. \textit{(c) insufficient scene representation capability.} A single global radiance field lacks the capacity to effectively scale to large-scale scenes. To this end, we propose an incremental joint learning framework, which can achieve accurate depth, pose estimation, and large-scale scene reconstruction. A vision transformer-based network is adopted as the backbone to enhance performance in scale information estimation. For pose estimation, a feature-metric bundle adjustment (FBA) method is designed for accurate and robust camera tracking in large-scale scenes. In terms of implicit scene representation, we propose an incremental scene representation method to construct the entire large-scale scene as multiple local radiance fields to enhance the scalability of 3D scene representation. Extended experiments have been conducted to demonstrate the effectiveness and accuracy of our method in depth estimation, pose estimation, and large-scale scene reconstruction.
Abstract:In recent years, there have been significant advancements in 3D reconstruction and dense RGB-D SLAM systems. One notable development is the application of Neural Radiance Fields (NeRF) in these systems, which utilizes implicit neural representation to encode 3D scenes. This extension of NeRF to SLAM has shown promising results. However, the depth images obtained from consumer-grade RGB-D sensors are often sparse and noisy, which poses significant challenges for 3D reconstruction and affects the accuracy of the representation of the scene geometry. Moreover, the original hierarchical feature grid with occupancy value is inaccurate for scene geometry representation. Furthermore, the existing methods select random pixels for camera tracking, which leads to inaccurate localization and is not robust in real-world indoor environments. To this end, we present NeSLAM, an advanced framework that achieves accurate and dense depth estimation, robust camera tracking, and realistic synthesis of novel views. First, a depth completion and denoising network is designed to provide dense geometry prior and guide the neural implicit representation optimization. Second, the occupancy scene representation is replaced with Signed Distance Field (SDF) hierarchical scene representation for high-quality reconstruction and view synthesis. Furthermore, we also propose a NeRF-based self-supervised feature tracking algorithm for robust real-time tracking. Experiments on various indoor datasets demonstrate the effectiveness and accuracy of the system in reconstruction, tracking quality, and novel view synthesis.
Abstract:Recent work has shown that 3D Gaussian-based SLAM enables high-quality reconstruction, accurate pose estimation, and real-time rendering of scenes. However, these approaches are built on a tremendous number of redundant 3D Gaussian ellipsoids, leading to high memory and storage costs, and slow training speed. To address the limitation, we propose a compact 3D Gaussian Splatting SLAM system that reduces the number and the parameter size of Gaussian ellipsoids. A sliding window-based masking strategy is first proposed to reduce the redundant ellipsoids. Then we observe that the covariance matrix (geometry) of most 3D Gaussian ellipsoids are extremely similar, which motivates a novel geometry codebook to compress 3D Gaussian geometric attributes, i.e., the parameters. Robust and accurate pose estimation is achieved by a global bundle adjustment method with reprojection loss. Extensive experiments demonstrate that our method achieves faster training and rendering speed while maintaining the state-of-the-art (SOTA) quality of the scene representation.
Abstract:Tracking the object 6-DoF pose is crucial for various downstream robot tasks and real-world applications. In this paper, we investigate the real-world robot task of aerial vision guidance for aerial robotics manipulation, utilizing category-level 6-DoF pose tracking. Aerial conditions inevitably introduce special challenges, such as rapid viewpoint changes in pitch and roll and inter-frame differences. To support these challenges in task, we firstly introduce a robust category-level 6-DoF pose tracker (Robust6DoF). This tracker leverages shape and temporal prior knowledge to explore optimal inter-frame keypoint pairs, generated under a priori structural adaptive supervision in a coarse-to-fine manner. Notably, our Robust6DoF employs a Spatial-Temporal Augmentation module to deal with the problems of the inter-frame differences and intra-class shape variations through both temporal dynamic filtering and shape-similarity filtering. We further present a Pose-Aware Discrete Servo strategy (PAD-Servo), serving as a decoupling approach to implement the final aerial vision guidance task. It contains two servo action policies to better accommodate the structural properties of aerial robotics manipulation. Exhaustive experiments on four well-known public benchmarks demonstrate the superiority of our Robust6DoF. Real-world tests directly verify that our Robust6DoF along with PAD-Servo can be readily used in real-world aerial robotic applications.
Abstract:Neural implicit scene representations have recently shown encouraging results in dense visual SLAM. However, existing methods produce low-quality scene reconstruction and low-accuracy localization performance when scaling up to large indoor scenes and long sequences. These limitations are mainly due to their single, global radiance field with finite capacity, which does not adapt to large scenarios. Their end-to-end pose networks are also not robust enough with the growth of cumulative errors in large scenes. To this end, we present PLGSLAM, a neural visual SLAM system which performs high-fidelity surface reconstruction and robust camera tracking in real time. To handle large-scale indoor scenes, PLGSLAM proposes a progressive scene representation method which dynamically allocates new local scene representation trained with frames within a local sliding window. This allows us to scale up to larger indoor scenes and improves robustness (even under pose drifts). In local scene representation, PLGSLAM utilizes tri-planes for local high-frequency features. We also incorporate multi-layer perceptron (MLP) networks for the low-frequency feature, smoothness, and scene completion in unobserved areas. Moreover, we propose local-to-global bundle adjustment method with a global keyframe database to address the increased pose drifts on long sequences. Experimental results demonstrate that PLGSLAM achieves state-of-the-art scene reconstruction results and tracking performance across various datasets and scenarios (both in small and large-scale indoor environments). The code will be open-sourced upon paper acceptance.
Abstract:Implicit neural representation has demonstrated promising results in view synthesis for large and complex scenes. However, existing approaches either fail to capture the fast-moving objects or need to build the scene graph without camera ego-motions, leading to low-quality synthesized views of the scene. We aim to jointly solve the view synthesis problem of large-scale urban scenes and fast-moving vehicles, which is more practical and challenging. To this end, we first leverage a graph structure to learn the local scene representations of dynamic objects and the background. Then, we design a progressive scheme that dynamically allocates a new local scene graph trained with frames within a temporal window, allowing us to scale up the representation to an arbitrarily large scene. Besides, the training views of urban scenes are relatively sparse, which leads to a significant decline in reconstruction accuracy for dynamic objects. Therefore, we design a frequency auto-encoder network to encode the latent code and regularize the frequency range of objects, which can enhance the representation of dynamic objects and address the issue of sparse image inputs. Additionally, we employ lidar point projection to maintain geometry consistency in large-scale urban scenes. Experimental results demonstrate that our method achieves state-of-the-art view synthesis accuracy, object manipulation, and scene roaming ability. The code will be open-sourced upon paper acceptance.
Abstract:Simultaneous Localization and Mapping (SLAM) is moving towards a robust perception age. However, LiDAR- and visual- SLAM may easily fail in adverse conditions (rain, snow, smoke and fog, etc.). In comparison, SLAM based on 4D Radar, thermal camera and IMU can work robustly. But only a few literature can be found. A major reason is the lack of related datasets, which seriously hinders the research. Even though some datasets are proposed based on 4D radar in past four years, they are mainly designed for object detection, rather than SLAM. Furthermore, they normally do not include thermal camera. Therefore, in this paper, NTU4DRadLM is presented to meet this requirement. The main characteristics are: 1) It is the only dataset that simultaneously includes all 6 sensors: 4D radar, thermal camera, IMU, 3D LiDAR, visual camera and RTK GPS. 2) Specifically designed for SLAM tasks, which provides fine-tuned ground truth odometry and intentionally formulated loop closures. 3) Considered both low-speed robot platform and fast-speed unmanned vehicle platform. 4) Covered structured, unstructured and semi-structured environments. 5) Considered both middle- and large- scale outdoor environments, i.e., the 6 trajectories range from 246m to 6.95km. 6) Comprehensively evaluated three types of SLAM algorithms. Totally, the dataset is around 17.6km, 85mins, 50GB and it will be accessible from this link: https://github.com/junzhang2016/NTU4DRadLM