Jenny
Abstract:The detection of small objects, particularly traffic signs, is a critical subtask within object detection and autonomous driving. Despite the notable achievements in previous research, two primary challenges persist. Firstly, the main issue is the singleness of feature extraction. Secondly, the detection process fails to effectively integrate with objects of varying sizes or scales. These issues are also prevalent in generic object detection. Motivated by these challenges, in this paper, we propose a novel object detection network named Efficient Multi-scale and Diverse Feature Network (EMDFNet) for traffic sign detection that integrates an Augmented Shortcut Module and an Efficient Hybrid Encoder to address the aforementioned issues simultaneously. Specifically, the Augmented Shortcut Module utilizes multiple branches to integrate various spatial semantic information and channel semantic information, thereby enhancing feature diversity. The Efficient Hybrid Encoder utilizes global feature fusion and local feature interaction based on various features to generate distinctive classification features by integrating feature information in an adaptable manner. Extensive experiments on the Tsinghua-Tencent 100K (TT100K) benchmark and the German Traffic Sign Detection Benchmark (GTSDB) demonstrate that our EMDFNet outperforms other state-of-the-art detectors in performance while retaining the real-time processing capabilities of single-stage models. This substantiates the effectiveness of EMDFNet in detecting small traffic signs.
Abstract:Current methods for developing foundation models in medical image segmentation rely on two primary assumptions: a fixed set of classes and the immediate availability of a substantial and diverse training dataset. However, this can be impractical due to the evolving nature of imaging technology and patient demographics, as well as labor-intensive data curation, limiting their practical applicability and scalability. To address these challenges, we introduce a novel segmentation paradigm enabling the segmentation of a variable number of classes within a single classifier-free network, featuring an architecture independent of class number. This network is trained using contrastive learning and produces discriminative feature representations that facilitate straightforward interpretation. Additionally, we integrate this strategy into a knowledge distillation-based incremental learning framework, facilitating the gradual assimilation of new information from non-stationary data streams while avoiding catastrophic forgetting. Our approach provides a unified solution for tackling both class- and domain-incremental learning scenarios. We demonstrate the flexibility of our method in handling varying class numbers within a unified network and its capacity for incremental learning. Experimental results on an incompletely annotated, multi-modal, multi-source dataset for medical image segmentation underscore its superiority over state-of-the-art alternative approaches.
Abstract:Personalization enables businesses to learn customer preferences from past interactions and thus to target individual customers with more relevant content. We consider the problem of predicting the optimal promotional offer for a given customer out of several options as a contextual bandit problem. Identifying information for the customer and/or the campaign can be used to deduce unknown customer/campaign features that improve optimal offer prediction. Using a generated synthetic email promo dataset, we demonstrate similar prediction accuracies for (a) a wide and deep network that takes identifying information (or other categorical features) as input to the wide part and (b) a deep-only neural network that includes embeddings of categorical features in the input. Improvements in accuracy from including categorical features depends on the variability of the unknown numerical features for each category. We also show that selecting options using upper confidence bound or Thompson sampling, approximated via Monte Carlo dropout layers in the wide and deep models, slightly improves model performance.
Abstract:To handle different types of Many-Objective Optimization Problems (MaOPs), Many-Objective Evolutionary Algorithms (MaOEAs) need to simultaneously maintain convergence and population diversity in the high-dimensional objective space. In order to balance the relationship between diversity and convergence, we introduce a Kernel Matrix and probability model called Determinantal Point Processes (DPPs). Our Many-Objective Evolutionary Algorithm with Determinantal Point Processes (MaOEADPPs) is presented and compared with several state-of-the-art algorithms on various types of MaOPs \textcolor{blue}{with different numbers of objectives}. The experimental results demonstrate that MaOEADPPs is competitive.
Abstract:A new family of penalty functions, adaptive to likelihood, is introduced for model selection in general regression models. It arises naturally through assuming certain types of prior distribution on the regression parameters. To study stability properties of the penalized maximum likelihood estimator, two types of asymptotic stability are defined. Theoretical properties, including the parameter estimation consistency, model selection consistency, and asymptotic stability, are established under suitable regularity conditions. An efficient coordinate-descent algorithm is proposed. Simulation results and real data analysis show that the proposed method has competitive performance in comparison with existing ones.