Abstract:In recent years, LiDAR-based localization and mapping methods have achieved significant progress thanks to their reliable and real-time localization capability. Considering single LiDAR odometry often faces hardware failures and degradation in practical scenarios, Multi-LiDAR Odometry (MLO), as an emerging technology, is studied to enhance the performance of LiDAR-based localization and mapping systems. However, MLO can suffer from high computational complexity introduced by dense point clouds that are fused from multiple LiDARs, and the continuous-time measurement characteristic is constantly neglected by existing LiDAR odometry. This motivates us to develop a Continuous-Time and Efficient MLO, namely CTE-MLO, which can achieve accurate and real-time state estimation using multi-LiDAR measurements through a continuous-time perspective. In this paper, the Gaussian process estimation is naturally combined with the Kalman filter, which enables each LiDAR point in a point stream to query the corresponding continuous-time trajectory within its time instants. A decentralized multi-LiDAR synchronization scheme also be devised to combine points from separate LiDARs into a single point cloud without the requirement for primary LiDAR assignment. Moreover, with the aim of improving the real-time performance of MLO without sacrificing robustness, a point cloud sampling strategy is designed with the consideration of localizability. The effectiveness of the proposed method is demonstrated through various scenarios, including public datasets and real-world autonomous driving experiments. The results demonstrate that the proposed CTE-MLO can achieve high-accuracy continuous-time state estimations in real-time and is demonstratively competitive compared to other state-of-the-art methods.
Abstract:Simultaneous Localization and Mapping (SLAM) is moving towards a robust perception age. However, LiDAR- and visual- SLAM may easily fail in adverse conditions (rain, snow, smoke and fog, etc.). In comparison, SLAM based on 4D Radar, thermal camera and IMU can work robustly. But only a few literature can be found. A major reason is the lack of related datasets, which seriously hinders the research. Even though some datasets are proposed based on 4D radar in past four years, they are mainly designed for object detection, rather than SLAM. Furthermore, they normally do not include thermal camera. Therefore, in this paper, NTU4DRadLM is presented to meet this requirement. The main characteristics are: 1) It is the only dataset that simultaneously includes all 6 sensors: 4D radar, thermal camera, IMU, 3D LiDAR, visual camera and RTK GPS. 2) Specifically designed for SLAM tasks, which provides fine-tuned ground truth odometry and intentionally formulated loop closures. 3) Considered both low-speed robot platform and fast-speed unmanned vehicle platform. 4) Covered structured, unstructured and semi-structured environments. 5) Considered both middle- and large- scale outdoor environments, i.e., the 6 trajectories range from 246m to 6.95km. 6) Comprehensively evaluated three types of SLAM algorithms. Totally, the dataset is around 17.6km, 85mins, 50GB and it will be accessible from this link: https://github.com/junzhang2016/NTU4DRadLM