Abstract:Recent advances in diffusion models have led to a quantum leap in the quality of generative visual content. However, quantification of realism of the content is still challenging. Existing evaluation metrics, such as Inception Score and Fr\'echet inception distance, fall short on benchmarking diffusion models due to the versatility of the generated images. Moreover, they are not designed to quantify realism of an individual image. This restricts their application in forensic image analysis, which is becoming increasingly important in the emerging era of generative models. To address that, we first propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image. This non-learning based metric not only efficiently quantifies realism of the generated images, it is readily usable as a measure to classify a given image as real or fake. We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN. We further leverage this attribute of our metric to minimize an IRS-augmented generative loss of SDM, and demonstrate a convenient yet considerable quality improvement of the SDM-generated content with our modification. Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models. We will release the dataset and code.
Abstract:Deepfake images are fast becoming a serious concern due to their realism. Diffusion models have recently demonstrated highly realistic visual content generation, which makes them an excellent potential tool for Deepfake generation. To curb their exploitation for Deepfakes, it is imperative to first explore the extent to which diffusion models can be used to generate realistic content that is controllable with convenient prompts. This paper devises and explores a novel method in that regard. Our technique alters the popular stable diffusion model to generate a controllable high-quality Deepfake image with text and image prompts. In addition, the original stable model lacks severely in generating quality images that contain multiple persons. The modified diffusion model is able to address this problem, it add input anchor image's latent at the beginning of inferencing rather than Gaussian random latent as input. Hence, we focus on generating forged content for celebrity interactions, which may be used to spread rumors. We also apply Dreambooth to enhance the realism of our fake images. Dreambooth trains the pairing of center words and specific features to produce more refined and personalized output images. Our results show that with the devised scheme, it is possible to create fake visual content with alarming realism, such that the content can serve as believable evidence of meetings between powerful political figures.