Abstract:Deploying large language models (LLMs) on edge devices presents significant challenges due to the substantial computational overhead and memory requirements. Activation sparsification can mitigate these challenges by reducing the number of activated neurons during inference. Existing methods typically employ thresholding-based sparsification based on the statistics of activation tensors. However, these methods do not explicitly model the impact of activation sparsification on performance, leading to suboptimal performance degradation. To address this issue, this paper reformulates the activation sparsification problem by introducing a new objective that optimizes the sparsification decisions. Building on this reformulation, we propose CHESS, a general activation sparsification approach via CHannel-wise thrEsholding and Selective Sparsification. First, channel-wise thresholding assigns a unique threshold to each activation channel in the feed-forward network (FFN) layers. Then, selective sparsification involves applying thresholding-based activation sparsification to specific layers within the attention modules. Finally, we detail the implementation of sparse kernels to accelerate LLM inference. Experimental results demonstrate that the proposed CHESS achieves lower performance degradation over 8 downstream tasks while activating fewer parameters compared to existing methods, thus speeding up the LLM inference by up to 1.27x.
Abstract:In multivariate spline regression, the number and locations of knots influence the performance and interpretability significantly. However, due to non-differentiability and varying dimensions, there is no desirable frequentist method to make inference on knots. In this article, we propose a fully Bayesian approach for knot inference in multivariate spline regression. The existing Bayesian method often uses BIC to calculate the posterior, but BIC is too liberal and it will heavily overestimate the knot number when the candidate model space is large. We specify a new prior on the knot number to take into account the complexity of the model space and derive an analytic formula in the normal model. In the non-normal cases, we utilize the extended Bayesian information criterion to approximate the posterior density. The samples are simulated in the space with differing dimensions via reversible jump Markov chain Monte Carlo. We apply the proposed method in knot inference and manifold denoising. Experiments demonstrate the splendid capability of the algorithm, especially in function fitting with jumping discontinuity.