Adobe Research
Abstract:Early-stage fire scenes (0-15 minutes after ignition) represent a crucial temporal window for emergency interventions. During this stage, the smoke produced by combustion significantly reduces the visibility of surveillance systems, severely impairing situational awareness and hindering effective emergency response and rescue operations. Consequently, there is an urgent need to remove smoke from images to obtain clear scene information. However, the development of smoke removal algorithms remains limited due to the lack of large-scale, real-world datasets comprising paired smoke-free and smoke-degraded images. To address these limitations, we present a real-world surveillance image desmoking benchmark dataset named SmokeBench, which contains image pairs captured under diverse scenes setup and smoke concentration. The curated dataset provides precisely aligned degraded and clean images, enabling supervised learning and rigorous evaluation. We conduct comprehensive experiments by benchmarking a variety of desmoking methods on our dataset. Our dataset provides a valuable foundation for advancing robust and practical image desmoking in real-world fire scenes. This dataset has been released to the public and can be downloaded from https://github.com/ncfjd/SmokeBench.
Abstract:Smartphones have become indispensable in people's daily lives, permeating nearly every aspect of modern society. With the continuous advancement of large language models (LLMs), numerous LLM-based mobile agents have emerged. These agents are capable of accurately parsing diverse user queries and automatically assisting users in completing complex or repetitive operations. However, current agents 1) heavily rely on the comprehension ability of LLMs, which can lead to errors caused by misoperations or omitted steps during tasks, 2) lack interaction with the external environment, often terminating tasks when an app cannot fulfill user queries, and 3) lack memory capabilities, requiring each instruction to reconstruct the interface and being unable to learn from and correct previous mistakes. To alleviate the above issues, we propose MobileRAG, a mobile agents framework enhanced by Retrieval-Augmented Generation (RAG), which includes InterRAG, LocalRAG, and MemRAG. It leverages RAG to more quickly and accurately identify user queries and accomplish complex and long-sequence mobile tasks. Additionally, to more comprehensively assess the performance of MobileRAG, we introduce MobileRAG-Eval, a more challenging benchmark characterized by numerous complex, real-world mobile tasks that require external knowledge assistance. Extensive experimental results on MobileRAG-Eval demonstrate that MobileRAG can easily handle real-world mobile tasks, achieving 10.3\% improvement over state-of-the-art methods with fewer operational steps. Our code is publicly available at: https://github.com/liuxiaojieOutOfWorld/MobileRAG_arxiv
Abstract:The effectiveness of Multimodal Chain-of-Thought (MCoT) prompting is often limited by the use of randomly or manually selected examples. These examples fail to account for both model-specific knowledge distributions and the intrinsic complexity of the tasks, resulting in suboptimal and unstable model performance. To address this, we propose a novel framework inspired by the pedagogical principle of "tailored teaching with balanced difficulty". We reframe prompt selection as a prompt curriculum design problem: constructing a well ordered set of training examples that align with the model's current capabilities. Our approach integrates two complementary signals: (1) model-perceived difficulty, quantified through prediction disagreement in an active learning setup, capturing what the model itself finds challenging; and (2) intrinsic sample complexity, which measures the inherent difficulty of each question-image pair independently of any model. By jointly analyzing these signals, we develop a difficulty-balanced sampling strategy that ensures the selected prompt examples are diverse across both dimensions. Extensive experiments conducted on five challenging benchmarks and multiple popular Multimodal Large Language Models (MLLMs) demonstrate that our method yields substantial and consistent improvements and greatly reduces performance discrepancies caused by random sampling, providing a principled and robust approach for enhancing multimodal reasoning.
Abstract:Deformable retinal image registration is notoriously difficult due to large homogeneous regions and sparse but critical vascular features, which cause limited gradient signals in standard learning-based frameworks. In this paper, we introduce Gaussian Primitive Optimization (GPO), a novel iterative framework that performs structured message passing to overcome these challenges. After an initial coarse alignment, we extract keypoints at salient anatomical structures (e.g., major vessels) to serve as a minimal set of descriptor-based control nodes (DCN). Each node is modelled as a Gaussian primitive with trainable position, displacement, and radius, thus adapting its spatial influence to local deformation scales. A K-Nearest Neighbors (KNN) Gaussian interpolation then blends and propagates displacement signals from these information-rich nodes to construct a globally coherent displacement field; focusing interpolation on the top (K) neighbors reduces computational overhead while preserving local detail. By strategically anchoring nodes in high-gradient regions, GPO ensures robust gradient flow, mitigating vanishing gradient signal in textureless areas. The framework is optimized end-to-end via a multi-term loss that enforces both keypoint consistency and intensity alignment. Experiments on the FIRE dataset show that GPO reduces the target registration error from 6.2\,px to ~2.4\,px and increases the AUC at 25\,px from 0.770 to 0.938, substantially outperforming existing methods. The source code can be accessed via https://github.com/xintian-99/GPOreg.
Abstract:Complex and diverse ultrastructural features can indicate the type, progression, and prognosis of kidney diseases. Recently, computational pathology combined with deep learning methods has shown tremendous potential in advancing automatic morphological analysis of glomerular ultrastructure. However, current research predominantly focuses on the recognition of individual ultrastructure, which makes it challenging to meet practical diagnostic needs. In this study, we propose the glomerular morphometry framework of ultrastructural characterization (Glo-DMU), which is grounded on three deep models: the ultrastructure segmentation model, the glomerular filtration barrier region classification model, and the electron-dense deposits detection model. Following the conventional protocol of renal biopsy diagnosis, this framework simultaneously quantifies the three most widely used ultrastructural features: the thickness of glomerular basement membrane, the degree of foot process effacement, and the location of electron-dense deposits. We evaluated the 115 patients with 9 renal pathological types in real-world diagnostic scenarios, demonstrating good consistency between automatic quantification results and morphological descriptions in the pathological reports. Glo-DMU possesses the characteristics of full automation, high precision, and high throughput, quantifying multiple ultrastructural features simultaneously, and providing an efficient tool for assisting renal pathologists.
Abstract:Knowledge editing (KE) provides a scalable approach for updating factual knowledge in large language models without full retraining. While previous studies have demonstrated effectiveness in general domains and medical QA tasks, little attention has been paid to KE in multimodal medical scenarios. Unlike text-only settings, medical KE demands integrating updated knowledge with visual reasoning to support safe and interpretable clinical decisions. To address this gap, we propose MultiMedEdit, the first benchmark tailored to evaluating KE in clinical multimodal tasks. Our framework spans both understanding and reasoning task types, defines a three-dimensional metric suite (reliability, generality, and locality), and supports cross-paradigm comparisons across general and domain-specific models. We conduct extensive experiments under single-editing and lifelong-editing settings. Results suggest that current methods struggle with generalization and long-tail reasoning, particularly in complex clinical workflows. We further present an efficiency analysis (e.g., edit latency, memory footprint), revealing practical trade-offs in real-world deployment across KE paradigms. Overall, MultiMedEdit not only reveals the limitations of current approaches but also provides a solid foundation for developing clinically robust knowledge editing techniques in the future.
Abstract:Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) are emerging as a powerful paradigm for solving complex, multifaceted problems. However, the potential of these systems is often constrained by the prevalent plan-and-execute framework, which suffers from critical limitations: rigid plan execution, static agent capabilities, and inefficient communication. These weaknesses hinder their adaptability and robustness in dynamic environments. This paper introduces Aime, a novel multi-agent framework designed to overcome these challenges through dynamic, reactive planning and execution. Aime replaces the conventional static workflow with a fluid and adaptive architecture. Its core innovations include: (1) a Dynamic Planner that continuously refines the overall strategy based on real-time execution feedback; (2) an Actor Factory that implements Dynamic Actor instantiation, assembling specialized agents on-demand with tailored tools and knowledge; and (3) a centralized Progress Management Module that serves as a single source of truth for coherent, system-wide state awareness. We empirically evaluated Aime on a diverse suite of benchmarks spanning general reasoning (GAIA), software engineering (SWE-bench Verified), and live web navigation (WebVoyager). The results demonstrate that Aime consistently outperforms even highly specialized state-of-the-art agents in their respective domains. Its superior adaptability and task success rate establish Aime as a more resilient and effective foundation for multi-agent collaboration.
Abstract:With the development of Embodied Artificial intelligence, the end-to-end control policy such as Vision-Language-Action (VLA) model has become the mainstream. Existing VLA models faces expensive computing/storage cost, which need to be optimized. Quantization is considered as the most effective method which can not only reduce the memory cost but also achieve computation acceleration. However, we find the token alignment of VLA models hinders the application of existing quantization methods. To address this, we proposed an optimized framework called EaqVLA, which apply encoding-aligned quantization to VLA models. Specifically, we propose an complete analysis method to find the misalignment in various granularity. Based on the analysis results, we propose a mixed precision quantization with the awareness of encoding alignment. Experiments shows that the porposed EaqVLA achieves better quantization performance (with the minimal quantization loss for end-to-end action control and xxx times acceleration) than existing quantization methods.
Abstract:Achieving generalizable and precise robotic manipulation across diverse environments remains a critical challenge, largely due to limitations in spatial perception. While prior imitation-learning approaches have made progress, their reliance on raw RGB inputs and handcrafted features often leads to overfitting and poor 3D reasoning under varied lighting, occlusion, and object conditions. In this paper, we propose a unified framework that couples robust multimodal perception with reliable grasp prediction. Our architecture fuses domain-randomized augmentation, monocular depth estimation, and a depth-aware 6-DoF Grasp Prompt into a single spatial representation for downstream action planning. Conditioned on this encoding and a high-level task prompt, our diffusion-based policy yields precise action sequences, achieving up to 40% improvement in grasp success and 45% higher task success rates under environmental variation. These results demonstrate that spatially grounded perception, paired with diffusion-based imitation learning, offers a scalable and robust solution for general-purpose robotic grasping.
Abstract:Neural fields are now the central focus of research in 3D vision and computer graphics. Existing methods mainly focus on various scene representations, such as neural points and 3D Gaussians. However, few works have studied the rendering process to enhance the neural fields. In this work, we propose a plug-in method named K-Buffers that leverages multiple buffers to improve the rendering performance. Our method first renders K buffers from scene representations and constructs K pixel-wise feature maps. Then, We introduce a K-Feature Fusion Network (KFN) to merge the K pixel-wise feature maps. Finally, we adopt a feature decoder to generate the rendering image. We also introduce an acceleration strategy to improve rendering speed and quality. We apply our method to well-known radiance field baselines, including neural point fields and 3D Gaussian Splatting (3DGS). Extensive experiments demonstrate that our method effectively enhances the rendering performance of neural point fields and 3DGS.