Abstract:Diffusion models have achieved remarkable success in novel view synthesis, but their reliance on large, diverse, and often untraceable Web datasets has raised pressing concerns about image copyright protection. Current methods fall short in reliably identifying unauthorized image use, as they struggle to generalize across varied generation tasks and fail when the training dataset includes images from multiple sources with few identifiable (watermarked or poisoned) samples. In this paper, we present novel evidence that diffusion-generated images faithfully preserve the statistical properties of their training data, particularly reflected in their spectral features. Leveraging this insight, we introduce \emph{CoprGuard}, a robust frequency domain watermarking framework to safeguard against unauthorized image usage in diffusion model training and fine-tuning. CoprGuard demonstrates remarkable effectiveness against a wide range of models, from naive diffusion models to sophisticated text-to-image models, and is robust even when watermarked images comprise a mere 1\% of the training dataset. This robust and versatile approach empowers content owners to protect their intellectual property in the era of AI-driven image generation.
Abstract:Membership Inference Attacks (MIAs) aim to predict whether a data sample belongs to the model's training set or not. Although prior research has extensively explored MIAs in Large Language Models (LLMs), they typically require accessing to complete output logits (\ie, \textit{logits-based attacks}), which are usually not available in practice. In this paper, we study the vulnerability of pre-trained LLMs to MIAs in the \textit{label-only setting}, where the adversary can only access generated tokens (text). We first reveal that existing label-only MIAs have minor effects in attacking pre-trained LLMs, although they are highly effective in inferring fine-tuning datasets used for personalized LLMs. We find that their failure stems from two main reasons, including better generalization and overly coarse perturbation. Specifically, due to the extensive pre-training corpora and exposing each sample only a few times, LLMs exhibit minimal robustness differences between members and non-members. This makes token-level perturbations too coarse to capture such differences. To alleviate these problems, we propose \textbf{PETAL}: a label-only membership inference attack based on \textbf{PE}r-\textbf{T}oken sem\textbf{A}ntic simi\textbf{L}arity. Specifically, PETAL leverages token-level semantic similarity to approximate output probabilities and subsequently calculate the perplexity. It finally exposes membership based on the common assumption that members are `better' memorized and have smaller perplexity. We conduct extensive experiments on the WikiMIA benchmark and the more challenging MIMIR benchmark. Empirically, our PETAL performs better than the extensions of existing label-only attacks against personalized LLMs and even on par with other advanced logit-based attacks across all metrics on five prevalent open-source LLMs.
Abstract:Watermarking plays a key role in the provenance and detection of AI-generated content. While existing methods prioritize robustness against real-world distortions (e.g., JPEG compression and noise addition), we reveal a fundamental tradeoff: such robust watermarks inherently improve the redundancy of detectable patterns encoded into images, creating exploitable information leakage. To leverage this, we propose an attack framework that extracts leakage of watermark patterns through multi-channel feature learning using a pre-trained vision model. Unlike prior works requiring massive data or detector access, our method achieves both forgery and detection evasion with a single watermarked image. Extensive experiments demonstrate that our method achieves a 60\% success rate gain in detection evasion and 51\% improvement in forgery accuracy compared to state-of-the-art methods while maintaining visual fidelity. Our work exposes the robustness-stealthiness paradox: current "robust" watermarks sacrifice security for distortion resistance, providing insights for future watermark design.
Abstract:This work asks: with abundant, unlabeled real faces, how to learn a robust and transferable facial representation that boosts various face security tasks with respect to generalization performance? We make the first attempt and propose a self-supervised pretraining framework to learn fundamental representations of real face images, FSFM, that leverages the synergy between masked image modeling (MIM) and instance discrimination (ID). We explore various facial masking strategies for MIM and present a simple yet powerful CRFR-P masking, which explicitly forces the model to capture meaningful intra-region consistency and challenging inter-region coherency. Furthermore, we devise the ID network that naturally couples with MIM to establish underlying local-to-global correspondence via tailored self-distillation. These three learning objectives, namely 3C, empower encoding both local features and global semantics of real faces. After pretraining, a vanilla ViT serves as a universal vision foundation model for downstream face security tasks: cross-dataset deepfake detection, cross-domain face anti-spoofing, and unseen diffusion facial forgery detection. Extensive experiments on 10 public datasets demonstrate that our model transfers better than supervised pretraining, visual and facial self-supervised learning arts, and even outperforms task-specialized SOTA methods.
Abstract:Extensive research has revealed that adversarial examples (AE) pose a significant threat to voice-controllable smart devices. Recent studies have proposed black-box adversarial attacks that require only the final transcription from an automatic speech recognition (ASR) system. However, these attacks typically involve many queries to the ASR, resulting in substantial costs. Moreover, AE-based adversarial audio samples are susceptible to ASR updates. In this paper, we identify the root cause of these limitations, namely the inability to construct AE attack samples directly around the decision boundary of deep learning (DL) models. Building on this observation, we propose ALIF, the first black-box adversarial linguistic feature-based attack pipeline. We leverage the reciprocal process of text-to-speech (TTS) and ASR models to generate perturbations in the linguistic embedding space where the decision boundary resides. Based on the ALIF pipeline, we present the ALIF-OTL and ALIF-OTA schemes for launching attacks in both the digital domain and the physical playback environment on four commercial ASRs and voice assistants. Extensive evaluations demonstrate that ALIF-OTL and -OTA significantly improve query efficiency by 97.7% and 73.3%, respectively, while achieving competitive performance compared to existing methods. Notably, ALIF-OTL can generate an attack sample with only one query. Furthermore, our test-of-time experiment validates the robustness of our approach against ASR updates.
Abstract:Recently, advanced Large Language Models (LLMs) such as GPT-4 have been integrated into many real-world applications like Code Copilot. These applications have significantly expanded the attack surface of LLMs, exposing them to a variety of threats. Among them, jailbreak attacks that induce toxic responses through jailbreak prompts have raised critical safety concerns. To identify these threats, a growing number of red teaming approaches simulate potential adversarial scenarios by crafting jailbreak prompts to test the target LLM. However, existing red teaming methods do not consider the unique vulnerabilities of LLM in different scenarios, making it difficult to adjust the jailbreak prompts to find context-specific vulnerabilities. Meanwhile, these methods are limited to refining jailbreak templates using a few mutation operations, lacking the automation and scalability to adapt to different scenarios. To enable context-aware and efficient red teaming, we abstract and model existing attacks into a coherent concept called "jailbreak strategy" and propose a multi-agent LLM system named RedAgent that leverages these strategies to generate context-aware jailbreak prompts. By self-reflecting on contextual feedback in an additional memory buffer, RedAgent continuously learns how to leverage these strategies to achieve effective jailbreaks in specific contexts. Extensive experiments demonstrate that our system can jailbreak most black-box LLMs in just five queries, improving the efficiency of existing red teaming methods by two times. Additionally, RedAgent can jailbreak customized LLM applications more efficiently. By generating context-aware jailbreak prompts towards applications on GPTs, we discover 60 severe vulnerabilities of these real-world applications with only two queries per vulnerability. We have reported all found issues and communicated with OpenAI and Meta for bug fixes.
Abstract:Machine learning models trained on vast amounts of real or synthetic data often achieve outstanding predictive performance across various domains. However, this utility comes with increasing concerns about privacy, as the training data may include sensitive information. To address these concerns, machine unlearning has been proposed to erase specific data samples from models. While some unlearning techniques efficiently remove data at low costs, recent research highlights vulnerabilities where malicious users could request unlearning on manipulated data to compromise the model. Despite these attacks' effectiveness, perturbed data differs from original training data, failing hash verification. Existing attacks on machine unlearning also suffer from practical limitations and require substantial additional knowledge and resources. To fill the gaps in current unlearning attacks, we introduce the Unlearning Usability Attack. This model-agnostic, unlearning-agnostic, and budget-friendly attack distills data distribution information into a small set of benign data. These data are identified as benign by automatic poisoning detection tools due to their positive impact on model training. While benign for machine learning, unlearning these data significantly degrades model information. Our evaluation demonstrates that unlearning this benign data, comprising no more than 1% of the total training data, can reduce model accuracy by up to 50%. Furthermore, our findings show that well-prepared benign data poses challenges for recent unlearning techniques, as erasing these synthetic instances demands higher resources than regular data. These insights underscore the need for future research to reconsider "data poisoning" in the context of machine unlearning.
Abstract:Human motion copy is an intriguing yet challenging task in artificial intelligence and computer vision, which strives to generate a fake video of a target person performing the motion of a source person. The problem is inherently challenging due to the subtle human-body texture details to be generated and the temporal consistency to be considered. Existing approaches typically adopt a conventional GAN with an L1 or L2 loss to produce the target fake video, which intrinsically necessitates a large number of training samples that are challenging to acquire. Meanwhile, current methods still have difficulties in attaining realistic image details and temporal consistency, which unfortunately can be easily perceived by human observers. Motivated by this, we try to tackle the issues from three aspects: (1) We constrain pose-to-appearance generation with a perceptual loss and a theoretically motivated Gromov-Wasserstein loss to bridge the gap between pose and appearance. (2) We present an episodic memory module in the pose-to-appearance generation to propel continuous learning that helps the model learn from its past poor generations. We also utilize geometrical cues of the face to optimize facial details and refine each key body part with a dedicated local GAN. (3) We advocate generating the foreground in a sequence-to-sequence manner rather than a single-frame manner, explicitly enforcing temporal inconsistency. Empirical results on five datasets, iPER, ComplexMotion, SoloDance, Fish, and Mouse datasets, demonstrate that our method is capable of generating realistic target videos while precisely copying motion from a source video. Our method significantly outperforms state-of-the-art approaches and gains 7.2% and 12.4% improvements in PSNR and FID respectively.
Abstract:Deepfake technology has given rise to a spectrum of novel and compelling applications. Unfortunately, the widespread proliferation of high-fidelity fake videos has led to pervasive confusion and deception, shattering our faith that seeing is believing. One aspect that has been overlooked so far is that current deepfake detection approaches may easily fall into the trap of overfitting, focusing only on forgery clues within one or a few local regions. Moreover, existing works heavily rely on neural networks to extract forgery features, lacking theoretical constraints guaranteeing that sufficient forgery clues are extracted and superfluous features are eliminated. These deficiencies culminate in unsatisfactory accuracy and limited generalizability in real-life scenarios. In this paper, we try to tackle these challenges through three designs: (1) We present a novel framework to capture broader forgery clues by extracting multiple non-overlapping local representations and fusing them into a global semantic-rich feature. (2) Based on the information bottleneck theory, we derive Local Information Loss to guarantee the orthogonality of local representations while preserving comprehensive task-relevant information. (3) Further, to fuse the local representations and remove task-irrelevant information, we arrive at a Global Information Loss through the theoretical analysis of mutual information. Empirically, our method achieves state-of-the-art performance on five benchmark datasets.Our code is available at \url{https://github.com/QingyuLiu/Exposing-the-Deception}, hoping to inspire researchers.
Abstract:The widespread smart devices raise people's concerns of being eavesdropped on. To enhance voice privacy, recent studies exploit the nonlinearity in microphone to jam audio recorders with inaudible ultrasound. However, existing solutions solely rely on energetic masking. Their simple-form noise leads to several problems, such as high energy requirements and being easily removed by speech enhancement techniques. Besides, most of these solutions do not support authorized recording, which restricts their usage scenarios. In this paper, we design an efficient yet robust system that can jam microphones while preserving authorized recording. Specifically, we propose a novel phoneme-based noise with the idea of informational masking, which can distract both machines and humans and is resistant to denoising techniques. Besides, we optimize the noise transmission strategy for broader coverage and implement a hardware prototype of our system. Experimental results show that our system can reduce the recognition accuracy of recordings to below 50\% under all tested speech recognition systems, which is much better than existing solutions.