Abstract:Traffic scenarios in roundabouts pose substantial complexity for automated driving. Manually mapping all possible scenarios into a state space is labor-intensive and challenging. Deep reinforcement learning (DRL) with its ability to learn from interacting with the environment emerges as a promising solution for training such automated driving models. This study explores, employs, and implements various DRL algorithms, namely Deep Deterministic Policy Gradient (DDPG), Proximal Policy Optimization (PPO), and Trust Region Policy Optimization (TRPO) to instruct automated vehicles' driving through roundabouts. The driving state space, action space, and reward function are designed. The reward function considers safety, efficiency, comfort, and energy consumption to align with real-world requirements. All three tested DRL algorithms succeed in enabling automated vehicles to drive through the roundabout. To holistically evaluate the performance of these algorithms, this study establishes an evaluation methodology considering multiple indicators such as safety, efficiency, and comfort level. A method employing the Analytic Hierarchy Process is also developed to weigh these evaluation indicators. Experimental results on various testing scenarios reveal that the TRPO algorithm outperforms DDPG and PPO in terms of safety and efficiency, and PPO performs best in terms of comfort level. Lastly, to verify the model's adaptability and robustness regarding other driving scenarios, this study also deploys the model trained by TRPO to a range of different testing scenarios, e.g., highway driving and merging. Experimental results demonstrate that the TRPO model trained on only roundabout driving scenarios exhibits a certain degree of proficiency in highway driving and merging scenarios. This study provides a foundation for the application of automated driving with DRL in real traffic environments.
Abstract:This paper presents a driver-specific risk recognition framework for autonomous vehicles that can extract inter-vehicle interactions. This extraction is carried out for urban driving scenarios in a driver-cognitive manner to improve the recognition accuracy of risky scenes. First, clustering analysis is applied to the operation data of drivers for learning the subjective assessment of risky scenes of different drivers and generating the corresponding risk label for each scene. Second, the graph representation model (GRM) is adopted to unify and construct the features of dynamic vehicles, inter-vehicle interactions and static traffic markings in real driving scenes into graphs. The driver-specific risk label provides ground truth to capture the risk evaluation criteria of different drivers. In addition, the graph model represents multiple features of the driving scenes. Therefore, the proposed framework can learn the risk-evaluating pattern of driving scenes of different drivers and establish driver-specific risk identifiers. Last, the performance of the proposed framework is evaluated via experiments conducted using real-world urban driving datasets collected by multiple drivers. The results show that the risks and their levels in real driving environments can be accurately recognized by the proposed framework.