Abstract:As automated vehicles (AVs) become increasingly popular, the question arises as to how cyclists will interact with such vehicles. This study investigated (1) whether cyclists spontaneously notice if a vehicle is driverless, (2) how well they perform a driver-detection task when explicitly instructed, and (3) how they carry out such tasks. Using a Wizard-of-Oz method, 37 participants cycled a designated route and encountered an AV multiple times in two experimental sessions. In Session 1, participants cycled the route uninstructed, while in Session 2, they were instructed to verbally report whether they detected the presence or absence of a driver. Additionally, we recorded the participants' gaze behaviour with eye-tracking and their responses in post-session interviews. The interviews revealed that 30% of the cyclists spontaneously mentioned the absence of a driver (Session 1), and when instructed (Session 2), they detected the absence and presence of the driver with 93% accuracy. The eye-tracking data showed that cyclists looked more frequently and longer at the vehicle in Session 2 compared to Session 1. Furthermore, participants exhibited intermittent sampling of the vehicle, and they looked in front of the vehicle when it was far away and towards the windshield region when it was closer. The post-session interviews also indicated that participants were curious, felt safe, and reported a need to receive information about the AV's driving state. In conclusion, cyclists can detect the absence of a driver in the AV, and this detection may influence their perceptions of safety. Further research is needed to explore these findings in real-world traffic conditions.
Abstract:The escalation in urban private car ownership has worsened the urban parking predicament, necessitating effective parking availability prediction for urban planning and management. However, the existing prediction methods suffer from low prediction accuracy with the lack of spatial-temporal correlation features related to parking volume, and neglect of flow patterns and correlations between similar parking lots within certain areas. To address these challenges, this study proposes a parking availability prediction framework integrating spatial-temporal deep learning with multi-source data fusion, encompassing traffic demand data from multiple sources (e.g., metro, bus, taxi services), and parking lot data. The framework is based on the Transformer as the spatial-temporal deep learning model and leverages K-means clustering to establish parking cluster zones, extracting and integrating traffic demand characteristics from various transportation modes (i.e., metro, bus, online ride-hailing, and taxi) connected to parking lots. Real-world empirical data was used to verify the effectiveness of the proposed method compared with different machine learning, deep learning, and traditional statistical models for predicting parking availability. Experimental results reveal that, with the proposed pipeline, the developed Transformer model outperforms other models in terms of various metrics, e.g., Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). By fusing multi-source demanding data with spatial-temporal deep learning techniques, this approach offers the potential to develop parking availability prediction systems that furnish more accurate and timely information to both drivers and urban planners, thereby fostering more efficient and sustainable urban mobility.
Abstract:The burgeoning navigation services using digital maps provide great convenience to drivers. Nevertheless, the presence of anomalies in lane rendering map images occasionally introduces potential hazards, as such anomalies can be misleading to human drivers and consequently contribute to unsafe driving conditions. In response to this concern and to accurately and effectively detect the anomalies, this paper transforms lane rendering image anomaly detection into a classification problem and proposes a four-phase pipeline consisting of data pre-processing, self-supervised pre-training with the masked image modeling (MiM) method, customized fine-tuning using cross-entropy based loss with label smoothing, and post-processing to tackle it leveraging state-of-the-art deep learning techniques, especially those involving Transformer models. Various experiments verify the effectiveness of the proposed pipeline. Results indicate that the proposed pipeline exhibits superior performance in lane rendering image anomaly detection, and notably, the self-supervised pre-training with MiM can greatly enhance the detection accuracy while significantly reducing the total training time. For instance, employing the Swin Transformer with Uniform Masking as self-supervised pretraining (Swin-Trans-UM) yielded a heightened accuracy at 94.77% and an improved Area Under The Curve (AUC) score of 0.9743 compared with the pure Swin Transformer without pre-training (Swin-Trans) with an accuracy of 94.01% and an AUC of 0.9498. The fine-tuning epochs were dramatically reduced to 41 from the original 280. In conclusion, the proposed pipeline, with its incorporation of self-supervised pre-training using MiM and other advanced deep learning techniques, emerges as a robust solution for enhancing the accuracy and efficiency of lane rendering image anomaly detection in digital navigation systems.
Abstract:Detecting abnormal driving behavior is critical for road traffic safety and the evaluation of drivers' behavior. With the advancement of machine learning (ML) algorithms and the accumulation of naturalistic driving data, many ML models have been adopted for abnormal driving behavior detection. Most existing ML-based detectors rely on (fully) supervised ML methods, which require substantial labeled data. However, ground truth labels are not always available in the real world, and labeling large amounts of data is tedious. Thus, there is a need to explore unsupervised or semi-supervised methods to make the anomaly detection process more feasible and efficient. To fill this research gap, this study analyzes large-scale real-world data revealing several abnormal driving behaviors (e.g., sudden acceleration, rapid lane-changing) and develops a Hierarchical Extreme Learning Machines (HELM) based semi-supervised ML method using partly labeled data to accurately detect the identified abnormal driving behaviors. Moreover, previous ML-based approaches predominantly utilize basic vehicle motion features (such as velocity and acceleration) to label and detect abnormal driving behaviors, while this study seeks to introduce Surrogate Safety Measures (SSMs) as the input features for ML models to improve the detection performance. Results from extensive experiments demonstrate the effectiveness of the proposed semi-supervised ML model with the introduced SSMs serving as important features. The proposed semi-supervised ML method outperforms other baseline semi-supervised or unsupervised methods regarding various metrics, e.g., delivering the best accuracy at 99.58% and the best F-1 measure at 0.9913. The ablation study further highlights the significance of SSMs for advancing detection performance.
Abstract:Condition-based maintenance is becoming increasingly important in hydraulic systems. However, anomaly detection for these systems remains challenging, especially since that anomalous data is scarce and labeling such data is tedious and even dangerous. Therefore, it is advisable to make use of unsupervised or semi-supervised methods, especially for semi-supervised learning which utilizes unsupervised learning as a feature extraction mechanism to aid the supervised part when only a small number of labels are available. This study systematically compares semi-supervised learning methods applied for anomaly detection in hydraulic condition monitoring systems. Firstly, thorough data analysis and feature learning were carried out to understand the open-sourced hydraulic condition monitoring dataset. Then, various methods were implemented and evaluated including traditional stand-alone semi-supervised learning models (e.g., one-class SVM, Robust Covariance), ensemble models (e.g., Isolation Forest), and deep neural network based models (e.g., autoencoder, Hierarchical Extreme Learning Machine (HELM)). Typically, this study customized and implemented an extreme learning machine based semi-supervised HELM model and verified its superiority over other semi-supervised methods. Extensive experiments show that the customized HELM model obtained state-of-the-art performance with the highest accuracy (99.5%), the lowest false positive rate (0.015), and the best F1-score (0.985) beating other semi-supervised methods.
Abstract:Developing and testing automated driving models in the real world might be challenging and even dangerous, while simulation can help with this, especially for challenging maneuvers. Deep reinforcement learning (DRL) has the potential to tackle complex decision-making and controlling tasks through learning and interacting with the environment, thus it is suitable for developing automated driving while not being explored in detail yet. This study carried out a comprehensive study by implementing, evaluating, and comparing the two DRL algorithms, Deep Q-networks (DQN) and Trust Region Policy Optimization (TRPO), for training automated driving on the highway-env simulation platform. Effective and customized reward functions were developed and the implemented algorithms were evaluated in terms of onlane accuracy (how well the car drives on the road within the lane), efficiency (how fast the car drives), safety (how likely the car is to crash into obstacles), and comfort (how much the car makes jerks, e.g., suddenly accelerates or brakes). Results show that the TRPO-based models with modified reward functions delivered the best performance in most cases. Furthermore, to train a uniform driving model that can tackle various driving maneuvers besides the specific ones, this study expanded the highway-env and developed an extra customized training environment, namely, ComplexRoads, integrating various driving maneuvers and multiple road scenarios together. Models trained on the designed ComplexRoads environment can adapt well to other driving maneuvers with promising overall performance. Lastly, several functionalities were added to the highway-env to implement this work. The codes are open on GitHub at https://github.com/alaineman/drlcarsim.
Abstract:Traffic scenarios in roundabouts pose substantial complexity for automated driving. Manually mapping all possible scenarios into a state space is labor-intensive and challenging. Deep reinforcement learning (DRL) with its ability to learn from interacting with the environment emerges as a promising solution for training such automated driving models. This study explores, employs, and implements various DRL algorithms, namely Deep Deterministic Policy Gradient (DDPG), Proximal Policy Optimization (PPO), and Trust Region Policy Optimization (TRPO) to instruct automated vehicles' driving through roundabouts. The driving state space, action space, and reward function are designed. The reward function considers safety, efficiency, comfort, and energy consumption to align with real-world requirements. All three tested DRL algorithms succeed in enabling automated vehicles to drive through the roundabout. To holistically evaluate the performance of these algorithms, this study establishes an evaluation methodology considering multiple indicators such as safety, efficiency, and comfort level. A method employing the Analytic Hierarchy Process is also developed to weigh these evaluation indicators. Experimental results on various testing scenarios reveal that the TRPO algorithm outperforms DDPG and PPO in terms of safety and efficiency, and PPO performs best in terms of comfort level. Lastly, to verify the model's adaptability and robustness regarding other driving scenarios, this study also deploys the model trained by TRPO to a range of different testing scenarios, e.g., highway driving and merging. Experimental results demonstrate that the TRPO model trained on only roundabout driving scenarios exhibits a certain degree of proficiency in highway driving and merging scenarios. This study provides a foundation for the application of automated driving with DRL in real traffic environments.
Abstract:Lane detection is crucial for vehicle localization which makes it the foundation for automated driving and many intelligent and advanced driving assistant systems. Available vision-based lane detection methods do not make full use of the valuable features and aggregate contextual information, especially the interrelationships between lane lines and other regions of the images in continuous frames. To fill this research gap and upgrade lane detection performance, this paper proposes a pipeline consisting of self pre-training with masked sequential autoencoders and fine-tuning with customized PolyLoss for the end-to-end neural network models using multi-continuous image frames. The masked sequential autoencoders are adopted to pre-train the neural network models with reconstructing the missing pixels from a random masked image as the objective. Then, in the fine-tuning segmentation phase where lane detection segmentation is performed, the continuous image frames are served as the inputs, and the pre-trained model weights are transferred and further updated using the backpropagation mechanism with customized PolyLoss calculating the weighted errors between the output lane detection results and the labeled ground truth. Extensive experiment results demonstrate that, with the proposed pipeline, the lane detection model performance on both normal and challenging scenes can be advanced beyond the state-of-the-art, delivering the best testing accuracy (98.38%), precision (0.937), and F1-measure (0.924) on the normal scene testing set, together with the best overall accuracy (98.36%) and precision (0.844) in the challenging scene test set, while the training time can be substantially shortened.
Abstract:As the central nerve of the intelligent vehicle control system, the in-vehicle network bus is crucial to the security of vehicle driving. One of the best standards for the in-vehicle network is the Controller Area Network (CAN bus) protocol. However, the CAN bus is designed to be vulnerable to various attacks due to its lack of security mechanisms. To enhance the security of in-vehicle networks and promote the research in this area, based upon a large scale of CAN network traffic data with the extracted valuable features, this study comprehensively compared fully-supervised machine learning with semi-supervised machine learning methods for CAN message anomaly detection. Both traditional machine learning models (including single classifier and ensemble models) and neural network based deep learning models are evaluated. Furthermore, this study proposed a deep autoencoder based semi-supervised learning method applied for CAN message anomaly detection and verified its superiority over other semi-supervised methods. Extensive experiments show that the fully-supervised methods generally outperform semi-supervised ones as they are using more information as inputs. Typically the developed XGBoost based model obtained state-of-the-art performance with the best accuracy (98.65%), precision (0.9853), and ROC AUC (0.9585) beating other methods reported in the literature.
Abstract:Reliable and accurate lane detection is of vital importance for the safe performance of Lane Keeping Assistance and Lane Departure Warning systems. However, under certain challenging peculiar circumstances, it is difficult to get satisfactory performance in accurately detecting the lanes from one single image which is often the case in current literature. Since lane markings are continuous lines, the lanes that are difficult to be accurately detected in the single current image can potentially be better deduced if information from previous frames is incorporated. This study proposes a novel hybrid spatial-temporal sequence-to-one deep learning architecture making full use of the spatial-temporal information in multiple continuous image frames to detect lane markings in the very last current frame. Specifically, the hybrid model integrates the single image feature extraction module with the spatial convolutional neural network (SCNN) embedded for excavating spatial features and relationships in one single image, the spatial-temporal feature integration module with spatial-temporal recurrent neural network (ST-RNN), which can capture the spatial-temporal correlations and time dependencies among image sequences, and the encoder-decoder structure, which makes this image segmentation problem work in an end-to-end supervised learning format. Extensive experiments reveal that the proposed model can effectively handle challenging driving scenes and outperforms available state-of-the-art methods with a large margin.