Abstract:As automated vehicles (AVs) become increasingly popular, the question arises as to how cyclists will interact with such vehicles. This study investigated (1) whether cyclists spontaneously notice if a vehicle is driverless, (2) how well they perform a driver-detection task when explicitly instructed, and (3) how they carry out such tasks. Using a Wizard-of-Oz method, 37 participants cycled a designated route and encountered an AV multiple times in two experimental sessions. In Session 1, participants cycled the route uninstructed, while in Session 2, they were instructed to verbally report whether they detected the presence or absence of a driver. Additionally, we recorded the participants' gaze behaviour with eye-tracking and their responses in post-session interviews. The interviews revealed that 30% of the cyclists spontaneously mentioned the absence of a driver (Session 1), and when instructed (Session 2), they detected the absence and presence of the driver with 93% accuracy. The eye-tracking data showed that cyclists looked more frequently and longer at the vehicle in Session 2 compared to Session 1. Furthermore, participants exhibited intermittent sampling of the vehicle, and they looked in front of the vehicle when it was far away and towards the windshield region when it was closer. The post-session interviews also indicated that participants were curious, felt safe, and reported a need to receive information about the AV's driving state. In conclusion, cyclists can detect the absence of a driver in the AV, and this detection may influence their perceptions of safety. Further research is needed to explore these findings in real-world traffic conditions.
Abstract:Recent advancements in AI have sped up the evolution of versatile robot designs. Chess provides a standardized environment that allows for the evaluation of the influence of robot behaviors on human behavior. This article presents an open-source chess robot for human-robot interaction (HRI) research, specifically focusing on verbal and non-verbal interactions. OpenChessRobot recognizes chess pieces using computer vision, executes moves, and interacts with the human player using voice and robotic gestures. We detail the software design, provide quantitative evaluations of the robot's efficacy and offer a guide for its reproducibility. The code and are accessible on GitHub: https://github.com/renchizhhhh/OpenChessRobot