Abstract:Addressing the challenge of ensuring safety in ever-changing and unpredictable environments, particularly in the swiftly advancing realm of autonomous driving in today's 5G wireless communication world, we present Navigation Secure (NavSecure). This vision-based navigation framework merges the strengths of world models with crucial safety-focused decision-making capabilities, enabling autonomous vehicles to navigate real-world complexities securely. Our approach anticipates potential threats and formulates safer routes by harnessing the predictive capabilities of world models, thus significantly reducing the need for extensive real-world trial-and-error learning. Additionally, our method empowers vehicles to autonomously learn and develop through continuous practice, ensuring the system evolves and adapts to new challenges. Incorporating radio frequency technology, NavSecure leverages 5G networks to enhance real-time data exchange, improving communication and responsiveness. Validated through rigorous experiments under simulation-to-real driving conditions, NavSecure has shown exceptional performance in safety-critical scenarios, such as sudden obstacle avoidance. Results indicate that NavSecure excels in key safety metrics, including collision prevention and risk reduction, surpassing other end-to-end methodologies. This framework not only advances autonomous driving safety but also demonstrates how world models can enhance decision-making in critical applications. NavSecure sets a new standard for developing more robust and trustworthy autonomous driving systems, capable of handling the inherent dynamics and uncertainties of real-world environments.
Abstract:To improve the performance of Graph Neural Networks (GNNs), Graph Structure Learning (GSL) has been extensively applied to reconstruct or refine original graph structures, effectively addressing issues like heterophily, over-squashing, and noisy structures. While GSL is generally thought to improve GNN performance, it often leads to longer training times and more hyperparameter tuning. Besides, the distinctions among current GSL methods remain ambiguous from the perspective of GNN training, and there is a lack of theoretical analysis to quantify their effectiveness. Recent studies further suggest that, under fair comparisons with the same hyperparameter tuning, GSL does not consistently outperform baseline GNNs. This motivates us to ask a critical question: is GSL really useful for GNNs? To address this question, this paper makes two key contributions. First, we propose a new GSL framework, which includes three steps: GSL base (the representation used for GSL) construction, new structure construction, and view fusion, to better understand the effectiveness of GSL in GNNs. Second, after graph convolution, we analyze the differences in mutual information (MI) between node representations derived from the original topology and those from the newly constructed topology. Surprisingly, our empirical observations and theoretical analysis show that no matter which type of graph structure construction methods are used, after feeding the same GSL bases to the newly constructed graph, there is no MI gain compared to the original GSL bases. To fairly reassess the effectiveness of GSL, we conduct ablation experiments and find that it is the pretrained GSL bases that enhance GNN performance, and in most cases, GSL cannot improve GNN performance. This finding encourages us to rethink the essential components in GNNs, such as self-training and structural encoding, in GNN design rather than GSL.
Abstract:Given a pair of point clouds, the goal of assembly is to recover a rigid transformation that aligns one point cloud to the other. This task is challenging because the point clouds may be non-overlapped, and they may have arbitrary initial positions. To address these difficulties, we propose a method, called SE(3)-bi-equivariant transformer (BITR), based on the SE(3)-bi-equivariance prior of the task: it guarantees that when the inputs are rigidly perturbed, the output will transform accordingly. Due to its equivariance property, BITR can not only handle non-overlapped PCs, but also guarantee robustness against initial positions. Specifically, BITR first extracts features of the inputs using a novel $SE(3) \times SE(3)$-transformer, and then projects the learned feature to group SE(3) as the output. Moreover, we theoretically show that swap and scale equivariances can be incorporated into BITR, thus it further guarantees stable performance under scaling and swapping the inputs. We experimentally show the effectiveness of BITR in practical tasks.
Abstract:Cognitive diagnosis is a fundamental and critical task in learning assessment, which aims to infer students' proficiency on knowledge concepts from their response logs. Current works assume each knowledge concept will certainly be tested and covered by multiple exercises. However, whether online or offline courses, it's hardly feasible to completely cover all knowledge concepts in several exercises. Restricted tests lead to undiscovered knowledge deficits, especially untested knowledge concepts(UKCs). In this paper, we propose a novel \underline{Dis}entangling Heterogeneous \underline{K}nowledge \underline{C}ognitive \underline{D}iagnosis framework on untested knowledge(DisKCD). Specifically, we leverage course grades, exercise questions, and resources to learn the potential representations of students, exercises, and knowledge concepts. In particular, knowledge concepts are disentangled into tested and untested based on the limiting actual exercises. We construct a heterogeneous relation graph network via students, exercises, tested knowledge concepts(TKCs), and UKCs. Then, through a hierarchical heterogeneous message-passing mechanism, the fine-grained relations are incorporated into the embeddings of the entities. Finally, the embeddings will be applied to multiple existing cognitive diagnosis models to infer students' proficiency on UKCs. Experimental results on real-world datasets show that the proposed model can effectively improve the performance of the task of diagnosing students' proficiency on UKCs. Our anonymous code is available at https://anonymous.4open.science/r/DisKCD.
Abstract:High-resolution Large Multimodal Models (LMMs) encounter the challenges of excessive visual tokens and quadratic visual complexity. Current high-resolution LMMs address the quadratic complexity while still generating excessive visual tokens. However, the redundancy in visual tokens is the key problem as it leads to more substantial compute. To mitigate this issue, we propose ConvLLaVA, which employs ConvNeXt, a hierarchical backbone, as the visual encoder of LMM to replace Vision Transformer (ViT). ConvLLaVA compresses high-resolution images into information-rich visual features, effectively preventing the generation of excessive visual tokens. To enhance the capabilities of ConvLLaVA, we propose two critical optimizations. Since the low-resolution pretrained ConvNeXt underperforms when directly applied on high resolution, we update it to bridge the gap. Moreover, since ConvNeXt's original compression ratio is inadequate for much higher resolution inputs, we train a successive stage to further compress the visual tokens, thereby reducing redundancy. These optimizations enable ConvLLaVA to support inputs of 1536x1536 resolution generating only 576 visual tokens, capable of handling images of arbitrary aspect ratios. Experimental results demonstrate that our method achieves competitive performance with state-of-the-art models on mainstream benchmarks. The ConvLLaVA model series are publicly available at https://github.com/alibaba/conv-llava.
Abstract:Large Language Models (LLMs) play a crucial role in capturing structured semantics to enhance language understanding, improve interpretability, and reduce bias. Nevertheless, an ongoing controversy exists over the extent to which LLMs can grasp structured semantics. To assess this, we propose using Semantic Role Labeling (SRL) as a fundamental task to explore LLMs' ability to extract structured semantics. In our assessment, we employ the prompting approach, which leads to the creation of our few-shot SRL parser, called PromptSRL. PromptSRL enables LLMs to map natural languages to explicit semantic structures, which provides an interpretable window into the properties of LLMs. We find interesting potential: LLMs can indeed capture semantic structures, and scaling-up doesn't always mirror potential. Additionally, limitations of LLMs are observed in C-arguments, etc. Lastly, we are surprised to discover that significant overlap in the errors is made by both LLMs and untrained humans, accounting for almost 30% of all errors.
Abstract:Spiking neural networks (SNNs) are widely applied in various fields due to their energy-efficient and fast-inference capabilities. Applying SNNs to reinforcement learning (RL) can significantly reduce the computational resource requirements for agents and improve the algorithm's performance under resource-constrained conditions. However, in current spiking reinforcement learning (SRL) algorithms, the simulation results of multiple time steps can only correspond to a single-step decision in RL. This is quite different from the real temporal dynamics in the brain and also fails to fully exploit the capacity of SNNs to process temporal data. In order to address this temporal mismatch issue and further take advantage of the inherent temporal dynamics of spiking neurons, we propose a novel temporal alignment paradigm (TAP) that leverages the single-step update of spiking neurons to accumulate historical state information in RL and introduces gated units to enhance the memory capacity of spiking neurons. Experimental results show that our method can solve partially observable Markov decision processes (POMDPs) and multi-agent cooperation problems with similar performance as recurrent neural networks (RNNs) but with about 50% power consumption.
Abstract:Fairness in machine learning (ML) has received much attention. However, existing studies have mainly focused on the distributive fairness of ML models. The other dimension of fairness, i.e., procedural fairness, has been neglected. In this paper, we first define the procedural fairness of ML models, and then give formal definitions of individual and group procedural fairness. We propose a novel metric to evaluate the group procedural fairness of ML models, called $GPF_{FAE}$, which utilizes a widely used explainable artificial intelligence technique, namely feature attribution explanation (FAE), to capture the decision process of the ML models. We validate the effectiveness of $GPF_{FAE}$ on a synthetic dataset and eight real-world datasets. Our experiments reveal the relationship between procedural and distributive fairness of the ML model. Based on our analysis, we propose a method for identifying the features that lead to the procedural unfairness of the model and propose two methods to improve procedural fairness after identifying unfair features. Our experimental results demonstrate that we can accurately identify the features that lead to procedural unfairness in the ML model, and both of our proposed methods can significantly improve procedural fairness with a slight impact on model performance, while also improving distributive fairness.
Abstract:Event cameras, with their high dynamic range and temporal resolution, are ideally suited for object detection, especially under scenarios with motion blur and challenging lighting conditions. However, while most existing approaches prioritize optimizing spatiotemporal representations with advanced detection backbones and early aggregation functions, the crucial issue of adaptive event sampling remains largely unaddressed. Spiking Neural Networks (SNNs), which operate on an event-driven paradigm through sparse spike communication, emerge as a natural fit for addressing this challenge. In this study, we discover that the neural dynamics of spiking neurons align closely with the behavior of an ideal temporal event sampler. Motivated by this insight, we propose a novel adaptive sampling module that leverages recurrent convolutional SNNs enhanced with temporal memory, facilitating a fully end-to-end learnable framework for event-based detection. Additionally, we introduce Residual Potential Dropout (RPD) and Spike-Aware Training (SAT) to regulate potential distribution and address performance degradation encountered in spike-based sampling modules. Through rigorous testing on neuromorphic datasets for event-based detection, our approach demonstrably surpasses existing state-of-the-art spike-based methods, achieving superior performance with significantly fewer parameters and time steps. For instance, our method achieves a 4.4\% mAP improvement on the Gen1 dataset, while requiring 38\% fewer parameters and three time steps. Moreover, the applicability and effectiveness of our adaptive sampling methodology extend beyond SNNs, as demonstrated through further validation on conventional non-spiking detection models.
Abstract:To facilitate the advancement of research in healthcare robots without human intervention or commands, we introduce the Autonomous Helping Challenge, along with a crowd-sourcing large-scale dataset. The goal is to create healthcare robots that possess the ability to determine when assistance is necessary, generate useful sub-tasks to aid in planning, carry out these plans through a physical robot, and receive feedback from the environment in order to generate new tasks and continue the process. Besides the general challenge in open-ended scenarios, Autonomous Helping focuses on three specific challenges: autonomous task generation, the gap between the current scene and static commonsense, and the gap between language instruction and the real world. Additionally, we propose Helpy, a potential approach to close the healthcare loop in the learning-free setting.