Abstract:In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens. We conduct a thorough evaluation of Hunyuan-Large's superior performance across various benchmarks including language understanding and generation, logical reasoning, mathematical problem-solving, coding, long-context, and aggregated tasks, where it outperforms LLama3.1-70B and exhibits comparable performance when compared to the significantly larger LLama3.1-405B model. Key practice of Hunyuan-Large include large-scale synthetic data that is orders larger than in previous literature, a mixed expert routing strategy, a key-value cache compression technique, and an expert-specific learning rate strategy. Additionally, we also investigate the scaling laws and learning rate schedule of mixture of experts models, providing valuable insights and guidances for future model development and optimization. The code and checkpoints of Hunyuan-Large are released to facilitate future innovations and applications. Codes: https://github.com/Tencent/Hunyuan-Large Models: https://huggingface.co/tencent/Tencent-Hunyuan-Large
Abstract:As Large Language Models (LLMs) grow increasingly adept at managing complex tasks, the evaluation set must keep pace with these advancements to ensure it remains sufficiently discriminative. Item Discrimination (ID) theory, which is widely used in educational assessment, measures the ability of individual test items to differentiate between high and low performers. Inspired by this theory, we propose an ID-induced prompt synthesis framework for evaluating LLMs to ensure the evaluation set can continually update and refine according to model abilities. Our data synthesis framework prioritizes both breadth and specificity. It can generate prompts that comprehensively evaluate the capabilities of LLMs while revealing meaningful performance differences between models, allowing for effective discrimination of their relative strengths and weaknesses across various tasks and domains. To produce high-quality data, we incorporate a self-correct mechanism into our generalization framework, and develop two models to predict prompt discrimination and difficulty score to facilitate our data synthesis framework, contributing valuable tools to evaluation data synthesis research. We apply our generated data to evaluate five SOTA models. Our data achieves an average score of 51.92, accompanied by a variance of 10.06. By contrast, previous works (i.e., SELF-INSTRUCT and WizardLM) obtain an average score exceeding 67, with a variance below 3.2. The results demonstrate that the data generated by our framework is more challenging and discriminative compared to previous works. We will release a dataset of over 3,000 carefully crafted prompts to facilitate evaluation research of LLMs.
Abstract:We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully design the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-turn multimodal dialogue with users, generating and refining images according to the context. Through our holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models. Code and pretrained models are publicly available at github.com/Tencent/HunyuanDiT
Abstract:Large language models (LLMs) have shown impressive capabilities across various natural language tasks. However, evaluating their alignment with human preferences remains a challenge. To this end, we propose a comprehensive human evaluation framework to assess LLMs' proficiency in following instructions on diverse real-world tasks. We construct a hierarchical task tree encompassing 7 major areas covering over 200 categories and over 800 tasks, which covers diverse capabilities such as question answering, reasoning, multiturn dialogue, and text generation, to evaluate LLMs in a comprehensive and in-depth manner. We also design detailed evaluation standards and processes to facilitate consistent, unbiased judgments from human evaluators. A test set of over 3,000 instances is released, spanning different difficulty levels and knowledge domains. Our work provides a standardized methodology to evaluate human alignment in LLMs for both English and Chinese. We also analyze the feasibility of automating parts of evaluation with a strong LLM (GPT-4). Our framework supports a thorough assessment of LLMs as they are integrated into real-world applications. We have made publicly available the task tree, TencentLLMEval dataset, and evaluation methodology which have been demonstrated as effective in assessing the performance of Tencent Hunyuan LLMs. By doing so, we aim to facilitate the benchmarking of advances in the development of safe and human-aligned LLMs.
Abstract:We explore the expression of personality and adaptivity through the gestures of virtual agents in a storytelling task. We conduct two experiments using four different dialogic stories. We manipulate agent personality on the extraversion scale, whether the agents adapt to one another in their gestural performance and agent gender. Our results show that subjects are able to perceive the intended variation in extraversion between different virtual agents, independently of the story they are telling and the gender of the agent. A second study shows that subjects also prefer adaptive to nonadaptive virtual agents.
Abstract:Human engagement in narrative is partially driven by reasoning about discourse relations between narrative events, and the expectations about what is likely to happen next that results from such reasoning. Researchers in NLP have tackled modeling such expectations from a range of perspectives, including treating it as the inference of the contingent discourse relation, or as a type of common-sense causal reasoning. Our approach is to model likelihood between events by drawing on several of these lines of previous work. We implement and evaluate different unsupervised methods for learning event pairs that are likely to be contingent on one another. We refine event pairs that we learn from a corpus of film scene descriptions utilizing web search counts, and evaluate our results by collecting human judgments of contingency. Our results indicate that the use of web search counts increases the average accuracy of our best method to 85.64% over a baseline of 50%, as compared to an average accuracy of 75.15% without web search.
Abstract:To understand narrative, humans draw inferences about the underlying relations between narrative events. Cognitive theories of narrative understanding define these inferences as four different types of causality, that include pairs of events A, B where A physically causes B (X drop, X break), to pairs of events where A causes emotional state B (Y saw X, Y felt fear). Previous work on learning narrative relations from text has either focused on "strict" physical causality, or has been vague about what relation is being learned. This paper learns pairs of causal events from a corpus of film scene descriptions which are action rich and tend to be told in chronological order. We show that event pairs induced using our methods are of high quality and are judged to have a stronger causal relation than event pairs from Rel-grams.
Abstract:Human understanding of narrative is mainly driven by reasoning about causal relations between events and thus recognizing them is a key capability for computational models of language understanding. Computational work in this area has approached this via two different routes: by focusing on acquiring a knowledge base of common causal relations between events, or by attempting to understand a particular story or macro-event, along with its storyline. In this position paper, we focus on knowledge acquisition approach and claim that newswire is a relatively poor source for learning fine-grained causal relations between everyday events. We describe experiments using an unsupervised method to learn causal relations between events in the narrative genres of first-person narratives and film scene descriptions. We show that our method learns fine-grained causal relations, judged by humans as likely to be causal over 80% of the time. We also demonstrate that the learned event pairs do not exist in publicly available event-pair datasets extracted from newswire.