Abstract:To accelerate the inference of heavy Multimodal Large Language Models (MLLMs), this study rethinks the current landscape of training-free token reduction research. We regret to find that the critical components of existing methods are tightly intertwined, with their interconnections and effects remaining unclear for comparison, transfer, and expansion. Therefore, we propose a unified ''filter-correlate-compress'' paradigm that decomposes the token reduction into three distinct stages within a pipeline, maintaining consistent design objectives and elements while allowing for unique implementations. We additionally demystify the popular works and subsume them into our paradigm to showcase its universality. Finally, we offer a suite of methods grounded in the paradigm, striking a balance between speed and accuracy throughout different phases of the inference. Experimental results across 10 benchmarks indicate that our methods can achieve up to an 82.4% reduction in FLOPs with a minimal impact on performance, simultaneously surpassing state-of-the-art training-free methods. Our project page is at https://ficoco-accelerate.github.io/.
Abstract:Referring expression comprehension (REC) is a vision-language task to locate a target object in an image based on a language expression. Fully fine-tuning general-purpose pre-trained models for REC yields impressive performance but becomes increasingly costly. Parameter-efficient transfer learning (PETL) methods have shown strong performance with fewer tunable parameters. However, applying PETL to REC faces two challenges: (1) insufficient interaction between pre-trained vision and language encoders, and (2) high GPU memory usage due to gradients passing through both heavy encoders. To address these issues, we present M$^2$IST: Multi-Modal Interactive Side-Tuning with M$^3$ISAs: Mixture of Multi-Modal Interactive Side-Adapters. During fine-tuning, we keep the pre-trained vision and language encoders fixed and update M$^3$ISAs on side networks to establish connections between them, thereby achieving parameter- and memory-efficient tuning for REC. Empirical results on three benchmarks show M$^2$IST achieves the best performance-parameter-memory trade-off compared to full fine-tuning and other PETL methods, with only 3.14M tunable parameters (2.11% of full fine-tuning) and 15.44GB GPU memory usage (39.61% of full fine-tuning). Source code will soon be publicly available.
Abstract:With the advent of image super-resolution (SR) algorithms, how to evaluate the quality of generated SR images has become an urgent task. Although full-reference methods perform well in SR image quality assessment (SR-IQA), their reliance on high-resolution (HR) images limits their practical applicability. Leveraging available reconstruction information as much as possible for SR-IQA, such as low-resolution (LR) images and the scale factors, is a promising way to enhance assessment performance for SR-IQA without HR for reference. In this letter, we attempt to evaluate the perceptual quality and reconstruction fidelity of SR images considering LR images and scale factors. Specifically, we propose a novel dual-branch reduced-reference SR-IQA network, \ie, Perception- and Fidelity-aware SR-IQA (PFIQA). The perception-aware branch evaluates the perceptual quality of SR images by leveraging the merits of global modeling of Vision Transformer (ViT) and local relation of ResNet, and incorporating the scale factor to enable comprehensive visual perception. Meanwhile, the fidelity-aware branch assesses the reconstruction fidelity between LR and SR images through their visual perception. The combination of the two branches substantially aligns with the human visual system, enabling a comprehensive SR image evaluation. Experimental results indicate that our PFIQA outperforms current state-of-the-art models across three widely-used SR-IQA benchmarks. Notably, PFIQA excels in assessing the quality of real-world SR images.
Abstract:Visual grounding (VG) is a challenging task to localize an object in an image based on a textual description. Recent surge in the scale of VG models has substantially improved performance, but also introduced a significant burden on computational costs during fine-tuning. In this paper, we explore applying parameter-efficient transfer learning (PETL) to efficiently transfer the pre-trained vision-language knowledge to VG. Specifically, we propose \textbf{DARA}, a novel PETL method comprising \underline{\textbf{D}}omain-aware \underline{\textbf{A}}dapters (DA Adapters) and \underline{\textbf{R}}elation-aware \underline{\textbf{A}}dapters (RA Adapters) for VG. DA Adapters first transfer intra-modality representations to be more fine-grained for the VG domain. Then RA Adapters share weights to bridge the relation between two modalities, improving spatial reasoning. Empirical results on widely-used benchmarks demonstrate that DARA achieves the best accuracy while saving numerous updated parameters compared to the full fine-tuning and other PETL methods. Notably, with only \textbf{2.13\%} tunable backbone parameters, DARA improves average accuracy by \textbf{0.81\%} across the three benchmarks compared to the baseline model. Our code is available at \url{https://github.com/liuting20/DARA}.
Abstract:Contemporary recommender systems predominantly rely on collaborative filtering techniques, employing ID-embedding to capture latent associations among users and items. However, this approach overlooks the wealth of semantic information embedded within textual descriptions of items, leading to suboptimal performance in cold-start scenarios and long-tail user recommendations. Leveraging the capabilities of Large Language Models (LLMs) pretrained on massive text corpus presents a promising avenue for enhancing recommender systems by integrating open-world domain knowledge. In this paper, we propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge. We address computational complexity concerns by utilizing pretrained LLMs as item encoders and freezing LLM parameters to avoid catastrophic forgetting and preserve open-world knowledge. To bridge the gap between the open-world and collaborative domains, we design a twin-tower structure supervised by the recommendation task and tailored for practical industrial application. Through offline experiments on the large-scale industrial dataset and online experiments on A/B tests, we demonstrate the efficacy of our approach.
Abstract:Presently, the task of few-shot object detection (FSOD) in remote sensing images (RSIs) has become a focal point of attention. Numerous few-shot detectors, particularly those based on two-stage detectors, face challenges when dealing with the multiscale complexities inherent in RSIs. Moreover, these detectors present impractical characteristics in real-world applications, mainly due to their unwieldy model parameters when handling large amount of data. In contrast, we recognize the advantages of one-stage detectors, including high detection speed and a global receptive field. Consequently, we choose the YOLOv7 one-stage detector as a baseline and subject it to a novel meta-learning training framework. This transformation allows the detector to adeptly address FSOD tasks while capitalizing on its inherent advantage of lightweight. Additionally, we thoroughly investigate the samples generated by the meta-learning strategy and introduce a novel meta-sampling approach to retain samples produced by our designed meta-detection head. Coupled with our devised meta-cross loss, we deliberately utilize ``negative samples" that are often overlooked to extract valuable knowledge from them. This approach serves to enhance detection accuracy and efficiently refine the overall meta-learning strategy. To validate the effectiveness of our proposed detector, we conducted performance comparisons with current state-of-the-art detectors using the DIOR and NWPU VHR-10.v2 datasets, yielding satisfactory results.
Abstract:Large-scale text-to-image diffusion models have shown impressive capabilities across various generative tasks, enabled by strong vision-language alignment obtained through pre-training. However, most vision-language discriminative tasks require extensive fine-tuning on carefully-labeled datasets to acquire such alignment, with great cost in time and computing resources. In this work, we explore directly applying a pre-trained generative diffusion model to the challenging discriminative task of visual grounding without any fine-tuning and additional training dataset. Specifically, we propose VGDiffZero, a simple yet effective zero-shot visual grounding framework based on text-to-image diffusion models. We also design a comprehensive region-scoring method considering both global and local contexts of each isolated proposal. Extensive experiments on RefCOCO, RefCOCO+, and RefCOCOg show that VGDiffZero achieves strong performance on zero-shot visual grounding.
Abstract:Single image super-resolution (SISR), which aims to reconstruct a high-resolution (HR) image from a low-resolution (LR) observation, has been an active research topic in the area of image processing in recent decades. Particularly, deep learning-based super-resolution (SR) approaches have drawn much attention and have greatly improved the reconstruction performance on synthetic data. Recent studies show that simulation results on synthetic data usually overestimate the capacity to super-resolve real-world images. In this context, more and more researchers devote themselves to develop SR approaches for realistic images. This article aims to make a comprehensive review on real-world single image super-resolution (RSISR). More specifically, this review covers the critical publically available datasets and assessment metrics for RSISR, and four major categories of RSISR methods, namely the degradation modeling-based RSISR, image pairs-based RSISR, domain translation-based RSISR, and self-learning-based RSISR. Comparisons are also made among representative RSISR methods on benchmark datasets, in terms of both reconstruction quality and computational efficiency. Besides, we discuss challenges and promising research topics on RSISR.
Abstract:We analyze that different methods based channel or position attention mechanism give rise to different performance on scale, and some of state-of-the-art detectors applying feature pyramid are integrated with various variants convolutions with many mechanisms to enhance information, resulting in increasing runtime. This work addresses the problem by constructing an anchor-free detector with shared module consisting of encoder and decoder with attention mechanism. First, we consider different level features from backbone (e.g., ResNet-50) as the base features. Second, we feed the feature into a simple block, rather than various complex operations.Then, location and classification tasks are obtained by the detector head and classifier, respectively. At the same time, we use the semantic information to revise geometry locations. Additionally, we show that the detector is a pixel-semantic revise of position, universal, effective and simple to detect, especially, large-scale objects. More importantly, this work compares different feature processing (e.g.,mean, maximum or minimum) performance across channel. Finally,we present that our method improves detection accuracy by 3.8 AP compared to state-of-the-art MNC based ResNet-101 on the standard MSCOCO baseline.
Abstract:Porous media are ubiquitous in both nature and engineering applications, thus their modelling and understanding is of vital importance. In contrast to direct acquisition of three-dimensional (3D) images of such medium, obtaining its sub-region (s) like two-dimensional (2D) images or several small areas could be much feasible. Therefore, reconstructing whole images from the limited information is a primary technique in such cases. Specially, in practice the given data cannot generally be determined by users and may be incomplete or partially informed, thus making existing reconstruction methods inaccurate or even ineffective. To overcome this shortcoming, in this study we proposed a deep learning-based framework for reconstructing full image from its much smaller sub-area(s). Particularly, conditional generative adversarial network (CGAN) is utilized to learn the mapping between input (partial image) and output (full image). To preserve the reconstruction accuracy, two simple but effective objective functions are proposed and then coupled with the other two functions to jointly constrain the training procedure. Due to the inherent essence of this ill-posed problem, a Gaussian noise is introduced for producing reconstruction diversity, thus allowing for providing multiple candidate outputs. Extensively tested on a variety of porous materials and demonstrated by both visual inspection and quantitative comparison, the method is shown to be accurate, stable yet fast ($\sim0.08s$ for a $128 \times 128$ image reconstruction). We highlight that the proposed approach can be readily extended, such as incorporating any user-define conditional data and an arbitrary number of object functions into reconstruction, and being coupled with other reconstruction methods.