Referring expression comprehension (REC) is a vision-language task to locate a target object in an image based on a language expression. Fully fine-tuning general-purpose pre-trained models for REC yields impressive performance but becomes increasingly costly. Parameter-efficient transfer learning (PETL) methods have shown strong performance with fewer tunable parameters. However, applying PETL to REC faces two challenges: (1) insufficient interaction between pre-trained vision and language encoders, and (2) high GPU memory usage due to gradients passing through both heavy encoders. To address these issues, we present M$^2$IST: Multi-Modal Interactive Side-Tuning with M$^3$ISAs: Mixture of Multi-Modal Interactive Side-Adapters. During fine-tuning, we keep the pre-trained vision and language encoders fixed and update M$^3$ISAs on side networks to establish connections between them, thereby achieving parameter- and memory-efficient tuning for REC. Empirical results on three benchmarks show M$^2$IST achieves the best performance-parameter-memory trade-off compared to full fine-tuning and other PETL methods, with only 3.14M tunable parameters (2.11% of full fine-tuning) and 15.44GB GPU memory usage (39.61% of full fine-tuning). Source code will soon be publicly available.