Abstract:Large Language Models (LLMs) have achieved remarkable progress in recent years; however, their excellent performance is still largely limited to major world languages, primarily English. Many LLMs continue to face challenges with multilingual tasks, especially when it comes to low-resource languages. To address this issue, we introduced Marco-LLM: Massive multilingual training for cross-lingual enhancement LLM. We have collected a substantial amount of multilingual data for several low-resource languages and conducted extensive continual pre-training using the Qwen2 models. This effort has resulted in a multilingual LLM named Marco-LLM. Through comprehensive evaluations on various multilingual benchmarks, including MMMLU, AGIEval, Belebele, Flores-200, XCOPA and many others, Marco-LLM has demonstrated substantial improvements over state-of-the-art LLMs. Furthermore, Marco-LLM achieved substantial enhancements in any-to-any machine translation tasks, showing the effectiveness of our multilingual LLM. Marco-LLM is a pioneering multilingual LLM designed to not only perform exceptionally well in multilingual tasks, including low-resource languages, but also maintain strong performance in English and other major languages, closing the performance gap between high- and low-resource language capabilities. By bridging languages, this effort demonstrates our dedication to ensuring LLMs work accurately across various languages.
Abstract:Supervised image captioning approaches have made great progress, but it is challenging to collect high-quality human-annotated image-text data. Recently, large-scale vision and language models (e.g., CLIP) and large-scale generative language models (e.g., GPT-2) have shown strong performances in various tasks, which also provide some new solutions for image captioning with web paired data, unpaired data or even text-only data. Among them, the mainstream solution is to project image embeddings into the text embedding space with the assistance of consistent representations between image-text pairs from the CLIP model. However, the current methods still face several challenges in adapting to the diversity of data configurations in a unified solution, accurately estimating image-text embedding bias, and correcting unsatisfactory prediction results in the inference stage. This paper proposes a new Text data-centric approach with Interactive Prompts for image Captioning, named TIPCap. 1) We consider four different settings which gradually reduce the dependence on paired data. 2) We construct a mapping module driven by multivariate Gaussian distribution to mitigate the modality gap, which is applicable to the above four different settings. 3) We propose a prompt interaction module that can incorporate optional prompt information before generating captions. Extensive experiments show that our TIPCap outperforms other weakly or unsupervised image captioning methods and achieves a new state-of-the-art performance on two widely used datasets, i.e., MS-COCO and Flickr30K.
Abstract:CNN-LSTM based architectures have played an important role in image captioning, but limited by the training efficiency and expression ability, researchers began to explore the CNN-Transformer based models and achieved great success. Meanwhile, almost all recent works adopt Faster R-CNN as the backbone encoder to extract region-level features from given images. However, Faster R-CNN needs a pre-training on an additional dataset, which divides the image captioning task into two stages and limits its potential applications. In this paper, we build a pure Transformer-based model, which integrates image captioning into one stage and realizes end-to-end training. Firstly, we adopt SwinTransformer to replace Faster R-CNN as the backbone encoder to extract grid-level features from given images; Then, referring to Transformer, we build a refining encoder and a decoder. The refining encoder refines the grid features by capturing the intra-relationship between them, and the decoder decodes the refined features into captions word by word. Furthermore, in order to increase the interaction between multi-modal (vision and language) features to enhance the modeling capability, we calculate the mean pooling of grid features as the global feature, then introduce it into refining encoder to refine with grid features together, and add a pre-fusion process of refined global feature and generated words in decoder. To validate the effectiveness of our proposed model, we conduct experiments on MSCOCO dataset. The experimental results compared to existing published works demonstrate that our model achieves new state-of-the-art performances of 138.2% (single model) and 141.0% (ensemble of 4 models) CIDEr scores on `Karpathy' offline test split and 136.0% (c5) and 138.3% (c40) CIDEr scores on the official online test server. Trained models and source code will be released.
Abstract:Image captioning is a challenging task and attracting more and more attention in the field of Artificial Intelligence, and which can be applied to efficient image retrieval, intelligent blind guidance and human-computer interaction, etc. In this paper, we present a survey on advances in image captioning based on Deep Learning methods, including Encoder-Decoder structure, improved methods in Encoder, improved methods in Decoder, and other improvements. Furthermore, we discussed future research directions.