Abstract:As large language models (LLMs) increasingly become central to various applications and interact with diverse user populations, ensuring their reliable and consistent performance is becoming more important. This paper explores a critical issue in assessing the reliability of LLMs: the consistency between their words and deeds. To quantitatively explore this consistency, we developed a novel evaluation benchmark called the Words and Deeds Consistency Test (WDCT). The benchmark establishes a strict correspondence between word-based and deed-based questions across different domains, including opinion vs. action, non-ethical value vs. action, ethical value vs. action, and theory vs. application. The evaluation results reveal a widespread inconsistency between words and deeds across different LLMs and domains. Subsequently, we conducted experiments with either word alignment or deed alignment to observe their impact on the other aspect. The experimental results indicate that alignment only on words or deeds poorly and unpredictably influences the other aspect. This supports our hypothesis that the underlying knowledge guiding LLMs' word or deed choices is not contained within a unified space.
Abstract:Many studies combine text and audio to capture multi-modal information but they overlook the model's generalization ability on new datasets. Introducing new datasets may affect the feature space of the original dataset, leading to catastrophic forgetting. Meanwhile, large model parameters can significantly impact training performance. To address these limitations, we introduce a novel task called Text-Audio Incremental Learning (TAIL) task for text-audio retrieval, and propose a new method, PTAT, Prompt Tuning for Audio-Text incremental learning. This method utilizes prompt tuning to optimize the model parameters while incorporating an audio-text similarity and feature distillation module to effectively mitigate catastrophic forgetting. We benchmark our method and previous incremental learning methods on AudioCaps, Clotho, BBC Sound Effects and Audioset datasets, and our method outperforms previous methods significantly, particularly demonstrating stronger resistance to forgetting on older datasets. Compared to the full-parameters Finetune (Sequential) method, our model only requires 2.42\% of its parameters, achieving 4.46\% higher performance.
Abstract:Existing diffusion-based purification methods aim to disrupt adversarial perturbations by introducing a certain amount of noise through a forward diffusion process, followed by a reverse process to recover clean examples. However, this approach is fundamentally flawed: the uniform operation of the forward process across all pixels compromises normal pixels while attempting to combat adversarial perturbations, resulting in the target model producing incorrect predictions. Simply relying on low-intensity noise is insufficient for effective defense. To address this critical issue, we implement a heterogeneous purification strategy grounded in the interpretability of neural networks. Our method decisively applies higher-intensity noise to specific pixels that the target model focuses on while the remaining pixels are subjected to only low-intensity noise. This requirement motivates us to redesign the sampling process of the diffusion model, allowing for the effective removal of varying noise levels. Furthermore, to evaluate our method against strong adaptative attack, our proposed method sharply reduces time cost and memory usage through a single-step resampling. The empirical evidence from extensive experiments across three datasets demonstrates that our method outperforms most current adversarial training and purification techniques by a substantial margin.
Abstract:The existence of noisy labels in real-world data negatively impacts the performance of deep learning models. Although much research effort has been devoted to improving the robustness towards noisy labels in classification tasks, the problem of noisy labels in deep metric learning (DML) remains under-explored. Existing noisy label learning methods designed for DML mainly discard suspicious noisy samples, resulting in a waste of the training data. To address this issue, we propose a noise-robust DML framework with SubGroup-based Positive-pair Selection (SGPS), which constructs reliable positive pairs for noisy samples to enhance the sample utilization. Specifically, SGPS first effectively identifies clean and noisy samples by a probability-based clean sample selectionstrategy. To further utilize the remaining noisy samples, we discover their potential similar samples based on the subgroup information given by a subgroup generation module and then aggregate them into informative positive prototypes for each noisy sample via a positive prototype generation module. Afterward, a new contrastive loss is tailored for the noisy samples with their selected positive pairs. SGPS can be easily integrated into the training process of existing pair-wise DML tasks, like image retrieval and face recognition. Extensive experiments on multiple synthetic and real-world large-scale label noise datasets demonstrate the effectiveness of our proposed method. Without any bells and whistles, our SGPS framework outperforms the state-of-the-art noisy label DML methods. Code is available at \url{https://github.com/smuelpeng/SGPS-NoiseFreeDML}.
Abstract:Data-free model stealing involves replicating the functionality of a target model into a substitute model without accessing the target model's structure, parameters, or training data. The adversary can only access the target model's predictions for generated samples. Once the substitute model closely approximates the behavior of the target model, attackers can exploit its white-box characteristics for subsequent malicious activities, such as adversarial attacks. Existing methods within cooperative game frameworks often produce samples with high confidence for the prediction of the substitute model, which makes it difficult for the substitute model to replicate the behavior of the target model. This paper presents a new data-free model stealing approach called Query Efficient Data Generation (\textbf{QEDG}). We introduce two distinct loss functions to ensure the generation of sufficient samples that closely and uniformly align with the target model's decision boundary across multiple classes. Building on the limitation of current methods, which typically yield only one piece of supervised information per query, we propose the query-free sample augmentation that enables the acquisition of additional supervised information without increasing the number of queries. Motivated by theoretical analysis, we adopt the consistency rate metric, which more accurately evaluates the similarity between the substitute and target models. We conducted extensive experiments to verify the effectiveness of our proposed method, which achieved better performance with fewer queries compared to the state-of-the-art methods on the real \textbf{MLaaS} scenario and five datasets.
Abstract:Mixture-of-Experts (MoE) models embody the divide-and-conquer concept and are a promising approach for increasing model capacity, demonstrating excellent scalability across multiple domains. In this paper, we integrate the MoE structure into the classic Vision Transformer (ViT), naming it ViMoE, and explore the potential of applying MoE to vision through a comprehensive study on image classification. However, we observe that the performance is sensitive to the configuration of MoE layers, making it challenging to obtain optimal results without careful design. The underlying cause is that inappropriate MoE layers lead to unreliable routing and hinder experts from effectively acquiring helpful knowledge. To address this, we introduce a shared expert to learn and capture common information, serving as an effective way to construct stable ViMoE. Furthermore, we demonstrate how to analyze expert routing behavior, revealing which MoE layers are capable of specializing in handling specific information and which are not. This provides guidance for retaining the critical layers while removing redundancies, thereby advancing ViMoE to be more efficient without sacrificing accuracy. We aspire for this work to offer new insights into the design of vision MoE models and provide valuable empirical guidance for future research.
Abstract:The Segment Anything model (SAM) has shown a generalized ability to group image pixels into patches, but applying it to semantic-aware segmentation still faces major challenges. This paper presents SAM-CP, a simple approach that establishes two types of composable prompts beyond SAM and composes them for versatile segmentation. Specifically, given a set of classes (in texts) and a set of SAM patches, the Type-I prompt judges whether a SAM patch aligns with a text label, and the Type-II prompt judges whether two SAM patches with the same text label also belong to the same instance. To decrease the complexity in dealing with a large number of semantic classes and patches, we establish a unified framework that calculates the affinity between (semantic and instance) queries and SAM patches and merges patches with high affinity to the query. Experiments show that SAM-CP achieves semantic, instance, and panoptic segmentation in both open and closed domains. In particular, it achieves state-of-the-art performance in open-vocabulary segmentation. Our research offers a novel and generalized methodology for equipping vision foundation models like SAM with multi-grained semantic perception abilities.
Abstract:Detecting visual content on language expression has become an emerging topic in the community. However, in the video domain, the existing setting, i.e., spatial-temporal video grounding (STVG), is formulated to only detect one pre-existing object in each frame, ignoring the fact that language descriptions can involve none or multiple entities within a video. In this work, we advance the STVG to a more practical setting called described spatial-temporal video detection (DSTVD) by overcoming the above limitation. To facilitate the exploration of DSTVD, we first introduce a new benchmark, namely DVD-ST. Notably, DVD-ST supports grounding from none to many objects onto the video in response to queries and encompasses a diverse range of over 150 entities, including appearance, actions, locations, and interactions. The extensive breadth and diversity of the DVD-ST dataset make it an exemplary testbed for the investigation of DSTVD. In addition to the new benchmark, we further present two baseline methods for our proposed DSTVD task by extending two representative STVG models, i.e., TubeDETR, and STCAT. These extended models capitalize on tubelet queries to localize and track referred objects across the video sequence. Besides, we adjust the training objectives of these models to optimize spatial and temporal localization accuracy and multi-class classification capabilities. Furthermore, we benchmark the baselines on the introduced DVD-ST dataset and conduct extensive experimental analysis to guide future investigation. Our code and benchmark will be publicly available.
Abstract:Rank aggregation with pairwise comparisons is widely encountered in sociology, politics, economics, psychology, sports, etc . Given the enormous social impact and the consequent incentives, the potential adversary has a strong motivation to manipulate the ranking list. However, the ideal attack opportunity and the excessive adversarial capability cause the existing methods to be impractical. To fully explore the potential risks, we leverage an online attack on the vulnerable data collection process. Since it is independent of rank aggregation and lacks effective protection mechanisms, we disrupt the data collection process by fabricating pairwise comparisons without knowledge of the future data or the true distribution. From the game-theoretic perspective, the confrontation scenario between the online manipulator and the ranker who takes control of the original data source is formulated as a distributionally robust game that deals with the uncertainty of knowledge. Then we demonstrate that the equilibrium in the above game is potentially favorable to the adversary by analyzing the vulnerability of the sampling algorithms such as Bernoulli and reservoir methods. According to the above theoretical analysis, different sequential manipulation policies are proposed under a Bayesian decision framework and a large class of parametric pairwise comparison models. For attackers with complete knowledge, we establish the asymptotic optimality of the proposed policies. To increase the success rate of the sequential manipulation with incomplete knowledge, a distributionally robust estimator, which replaces the maximum likelihood estimation in a saddle point problem, provides a conservative data generation solution. Finally, the corroborating empirical evidence shows that the proposed method manipulates the results of rank aggregation methods in a sequential manner.
Abstract:The practice of Retrieval-Augmented Generation (RAG), which integrates Large Language Models (LLMs) with retrieval systems, has become increasingly prevalent. However, the repercussions of LLM-derived content infiltrating the web and influencing the retrieval-generation feedback loop are largely uncharted territories. In this study, we construct and iteratively run a simulation pipeline to deeply investigate the short-term and long-term effects of LLM text on RAG systems. Taking the trending Open Domain Question Answering (ODQA) task as a point of entry, our findings reveal a potential digital "Spiral of Silence" effect, with LLM-generated text consistently outperforming human-authored content in search rankings, thereby diminishing the presence and impact of human contributions online. This trend risks creating an imbalanced information ecosystem, where the unchecked proliferation of erroneous LLM-generated content may result in the marginalization of accurate information. We urge the academic community to take heed of this potential issue, ensuring a diverse and authentic digital information landscape.