Stephen
Abstract:Large pre-trained vision-language models (VLMs), such as CLIP, demonstrate impressive generalization but remain highly vulnerable to adversarial examples (AEs). Previous work has explored robust text prompts through adversarial training, achieving some improvement in both robustness and generalization. However, they primarily rely on singlegradient direction perturbations (e.g., PGD) to generate AEs, which lack diversity, resulting in limited improvement in adversarial robustness. To address these limitations, we propose an evolution-based region adversarial prompt tuning method called ER-APT, which combines gradient methods with genetic evolution to generate more diverse and challenging AEs. In each training iteration, we first generate AEs using traditional gradient-based methods. Subsequently, a genetic evolution mechanism incorporating selection, mutation, and crossover is applied to optimize the AEs, ensuring a broader and more aggressive perturbation distribution.The final evolved AEs are used for prompt tuning, achieving region-based adversarial optimization instead of conventional single-point adversarial prompt tuning. We also propose a dynamic loss weighting method to adjust prompt learning efficiency for accuracy and robustness. Experimental evaluations on various benchmark datasets demonstrate the superiority of our proposed method, outperforming stateof-the-art APT methods. The code is released at https://github.com/jiaxiaojunQAQ/ER-APT.
Abstract:There are many deep learning (DL) powered mobile and wearable applications today continuously and unobtrusively sensing the ambient surroundings to enhance all aspects of human lives.To enable robust and private mobile sensing, DL models are often deployed locally on resource-constrained mobile devices using techniques such as model compression or offloading.However, existing methods, either front-end algorithm level (i.e. DL model compression/partitioning) or back-end scheduling level (i.e. operator/resource scheduling), cannot be locally online because they require offline retraining to ensure accuracy or rely on manually pre-defined strategies, struggle with dynamic adaptability.The primary challenge lies in feeding back runtime performance from the back-end level to the front-end level optimization decision. Moreover, the adaptive mobile DL model porting middleware with cross-level co-adaptation is less explored, particularly in mobile environments with diversity and dynamics. In response, we introduce CrowdHMTware, a dynamic context-adaptive DL model deployment middleware for heterogeneous mobile devices. It establishes an automated adaptation loop between cross-level functional components, i.e. elastic inference, scalable offloading, and model-adaptive engine, enhancing scalability and adaptability. Experiments with four typical tasks across 15 platforms and a real-world case study demonstrate that CrowdHMTware can effectively scale DL model, offloading, and engine actions across diverse platforms and tasks. It hides run-time system issues from developers, reducing the required developer expertise.
Abstract:Existing diffusion-based purification methods aim to disrupt adversarial perturbations by introducing a certain amount of noise through a forward diffusion process, followed by a reverse process to recover clean examples. However, this approach is fundamentally flawed: the uniform operation of the forward process across all pixels compromises normal pixels while attempting to combat adversarial perturbations, resulting in the target model producing incorrect predictions. Simply relying on low-intensity noise is insufficient for effective defense. To address this critical issue, we implement a heterogeneous purification strategy grounded in the interpretability of neural networks. Our method decisively applies higher-intensity noise to specific pixels that the target model focuses on while the remaining pixels are subjected to only low-intensity noise. This requirement motivates us to redesign the sampling process of the diffusion model, allowing for the effective removal of varying noise levels. Furthermore, to evaluate our method against strong adaptative attack, our proposed method sharply reduces time cost and memory usage through a single-step resampling. The empirical evidence from extensive experiments across three datasets demonstrates that our method outperforms most current adversarial training and purification techniques by a substantial margin.
Abstract:The Markov property serves as a foundational assumption in most existing work on vehicle driving behavior, positing that future states depend solely on the current state, not the series of preceding states. This study validates the Markov properties of vehicle trajectories for both Autonomous Vehicles (AVs) and Human-driven Vehicles (HVs). A statistical method used to test whether time series data exhibits Markov properties is applied to examine whether the trajectory data possesses Markov characteristics. t test and F test are additionally introduced to characterize the differences in Markov properties between AVs and HVs. Based on two public trajectory datasets, we investigate the presence and order of the Markov property of different types of vehicles through rigorous statistical tests. Our findings reveal that AV trajectories generally exhibit stronger Markov properties compared to HV trajectories, with a higher percentage conforming to the Markov property and lower Markov orders. In contrast, HV trajectories display greater variability and heterogeneity in decision-making processes, reflecting the complex perception and information processing involved in human driving. These results have significant implications for the development of driving behavior models, AV controllers, and traffic simulation systems. Our study also demonstrates the feasibility of using statistical methods to test the presence of Markov properties in driving trajectory data.
Abstract:Motor-evoked potentials (MEPs) are among the few directly observable responses to external brain stimulation and serve a variety of applications, often in the form of input-output (IO) curves. Previous statistical models with two variability sources inherently consider the small MEPs at the low-side plateau as part of the neural recruitment properties. However, recent studies demonstrated that small MEP responses under resting conditions are contaminated and over-shadowed by background noise of mostly technical quality, e.g., caused by the amplifier, and suggested that the neural recruitment curve should continue below this noise level. This work intends to separate physiological variability from background noise and improve the description of recruitment behaviour. We developed a triple-variability-source model around a logarithmic logistic function without a lower plateau and incorporated an additional source for background noise. Compared to models with two or fewer variability sources, our approach better described IO characteristics, evidenced by lower Bayesian Information Criterion scores across all subjects and pulse shapes. The model independently extracted hidden variability information across the stimulated neural system and isolated it from background noise, which led to an accurate estimation of the IO curve parameters. This new model offers a robust tool to analyse brain stimulation IO curves in clinical and experimental neuroscience and reduces the risk of spurious results from inappropriate statistical methods. The presented model together with the corresponding calibration method provides a more accurate representation of MEP responses and variability sources, advances our understanding of cortical excitability, and may improve the assessment of neuromodulation effects.
Abstract:Data-free model stealing involves replicating the functionality of a target model into a substitute model without accessing the target model's structure, parameters, or training data. The adversary can only access the target model's predictions for generated samples. Once the substitute model closely approximates the behavior of the target model, attackers can exploit its white-box characteristics for subsequent malicious activities, such as adversarial attacks. Existing methods within cooperative game frameworks often produce samples with high confidence for the prediction of the substitute model, which makes it difficult for the substitute model to replicate the behavior of the target model. This paper presents a new data-free model stealing approach called Query Efficient Data Generation (\textbf{QEDG}). We introduce two distinct loss functions to ensure the generation of sufficient samples that closely and uniformly align with the target model's decision boundary across multiple classes. Building on the limitation of current methods, which typically yield only one piece of supervised information per query, we propose the query-free sample augmentation that enables the acquisition of additional supervised information without increasing the number of queries. Motivated by theoretical analysis, we adopt the consistency rate metric, which more accurately evaluates the similarity between the substitute and target models. We conducted extensive experiments to verify the effectiveness of our proposed method, which achieved better performance with fewer queries compared to the state-of-the-art methods on the real \textbf{MLaaS} scenario and five datasets.
Abstract:We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.
Abstract:Vision Transformers (ViT) is known for its scalability. In this work, we target to scale down a ViT to fit in an environment with dynamic-changing resource constraints. We observe that smaller ViTs are intrinsically the sub-networks of a larger ViT with different widths. Thus, we propose a general framework, named Scala, to enable a single network to represent multiple smaller ViTs with flexible inference capability, which aligns with the inherent design of ViT to vary from widths. Concretely, Scala activates several subnets during training, introduces Isolated Activation to disentangle the smallest sub-network from other subnets, and leverages Scale Coordination to ensure each sub-network receives simplified, steady, and accurate learning objectives. Comprehensive empirical validations on different tasks demonstrate that with only one-shot training, Scala learns slimmable representation without modifying the original ViT structure and matches the performance of Separate Training. Compared with the prior art, Scala achieves an average improvement of 1.6% on ImageNet-1K with fewer parameters.
Abstract:Deep learning is reshaping mobile applications, with a growing trend of deploying deep neural networks (DNNs) directly to mobile and embedded devices to address real-time performance and privacy. To accommodate local resource limitations, techniques like weight compression, convolution decomposition, and specialized layer architectures have been developed. However, the \textit{dynamic} and \textit{diverse} deployment contexts of mobile devices pose significant challenges. Adapting deep models to meet varied device-specific requirements for latency, accuracy, memory, and energy is labor-intensive. Additionally, changing processor states, fluctuating memory availability, and competing processes frequently necessitate model re-compression to preserve user experience. To address these issues, we introduce AdaScale, an elastic inference framework that automates the adaptation of deep models to dynamic contexts. AdaScale leverages a self-evolutionary model to streamline network creation, employs diverse compression operator combinations to reduce the search space and improve outcomes, and integrates a resource availability awareness block and performance profilers to establish an automated adaptation loop. Our experiments demonstrate that AdaScale significantly enhances accuracy by 5.09%, reduces training overhead by 66.89%, speeds up inference latency by 1.51 to 6.2 times, and lowers energy costs by 4.69 times.
Abstract:Vision-language pre-training (VLP) models excel at interpreting both images and text but remain vulnerable to multimodal adversarial examples (AEs). Advancing the generation of transferable AEs, which succeed across unseen models, is key to developing more robust and practical VLP models. Previous approaches augment image-text pairs to enhance diversity within the adversarial example generation process, aiming to improve transferability by expanding the contrast space of image-text features. However, these methods focus solely on diversity around the current AEs, yielding limited gains in transferability. To address this issue, we propose to increase the diversity of AEs by leveraging the intersection regions along the adversarial trajectory during optimization. Specifically, we propose sampling from adversarial evolution triangles composed of clean, historical, and current adversarial examples to enhance adversarial diversity. We provide a theoretical analysis to demonstrate the effectiveness of the proposed adversarial evolution triangle. Moreover, we find that redundant inactive dimensions can dominate similarity calculations, distorting feature matching and making AEs model-dependent with reduced transferability. Hence, we propose to generate AEs in the semantic image-text feature contrast space, which can project the original feature space into a semantic corpus subspace. The proposed semantic-aligned subspace can reduce the image feature redundancy, thereby improving adversarial transferability. Extensive experiments across different datasets and models demonstrate that the proposed method can effectively improve adversarial transferability and outperform state-of-the-art adversarial attack methods. The code is released at https://github.com/jiaxiaojunQAQ/SA-AET.