Abstract:Neural enhancement through super-resolution deep neural networks opens up new possibilities for ultra-high-definition live streaming over existing encoding and networking infrastructure. Yet, the heavy SR DNN inference overhead leads to severe deployment challenges. To reduce the overhead, existing systems propose to apply DNN-based SR only on selected anchor frames while upscaling non-anchor frames via the lightweight reusing-based SR approach. However, frame-level scheduling is coarse-grained and fails to deliver optimal efficiency. In this work, we propose Palantir, the first neural-enhanced UHD live streaming system with fine-grained patch-level scheduling. In the presented solutions, two novel techniques are incorporated to make good scheduling decisions for inference overhead optimization and reduce the scheduling latency. Firstly, under the guidance of our pioneering and theoretical analysis, Palantir constructs a directed acyclic graph (DAG) for lightweight yet accurate quality estimation under any possible anchor patch set. Secondly, to further optimize the scheduling latency, Palantir improves parallelizability by refactoring the computation subprocedure of the estimation process into a sparse matrix-matrix multiplication operation. The evaluation results suggest that Palantir incurs a negligible scheduling latency accounting for less than 5.7% of the end-to-end latency requirement. When compared to the state-of-the-art real-time frame-level scheduling strategy, Palantir reduces the energy overhead of SR-integrated mobile clients by 38.1% at most (and 22.4% on average) and the monetary costs of cloud-based SR by 80.1% at most (and 38.4% on average).
Abstract:Public policies that supply public goods, especially those involve collaboration by limiting individual liberty, always give rise to controversies over governance legitimacy. Multi-Agent Reinforcement Learning (MARL) methods are appropriate for supporting the legitimacy of the public policies that supply public goods at the cost of individual interests. Among these policies, the inter-regional collaborative pandemic control is a prominent example, which has become much more important for an increasingly inter-connected world facing a global pandemic like COVID-19. Different patterns of collaborative strategies have been observed among different systems of regions, yet it lacks an analytical process to reason for the legitimacy of those strategies. In this paper, we use the inter-regional collaboration for pandemic control as an example to demonstrate the necessity of MARL in reasoning, and thereby legitimizing policies enforcing such inter-regional collaboration. Experimental results in an exemplary environment show that our MARL approach is able to demonstrate the effectiveness and necessity of restrictions on individual liberty for collaborative supply of public goods. Different optimal policies are learned by our MARL agents under different collaboration levels, which change in an interpretable pattern of collaboration that helps to balance the losses suffered by regions of different types, and consequently promotes the overall welfare. Meanwhile, policies learned with higher collaboration levels yield higher global rewards, which illustrates the benefit of, and thus provides a novel justification for the legitimacy of, promoting inter-regional collaboration. Therefore, our method shows the capability of MARL in computationally modeling and supporting the theory of calculus of consent, developed by Nobel Prize winner J. M. Buchanan.