Abstract:Vision-language pre-training (VLP) models excel at interpreting both images and text but remain vulnerable to multimodal adversarial examples (AEs). Advancing the generation of transferable AEs, which succeed across unseen models, is key to developing more robust and practical VLP models. Previous approaches augment image-text pairs to enhance diversity within the adversarial example generation process, aiming to improve transferability by expanding the contrast space of image-text features. However, these methods focus solely on diversity around the current AEs, yielding limited gains in transferability. To address this issue, we propose to increase the diversity of AEs by leveraging the intersection regions along the adversarial trajectory during optimization. Specifically, we propose sampling from adversarial evolution triangles composed of clean, historical, and current adversarial examples to enhance adversarial diversity. We provide a theoretical analysis to demonstrate the effectiveness of the proposed adversarial evolution triangle. Moreover, we find that redundant inactive dimensions can dominate similarity calculations, distorting feature matching and making AEs model-dependent with reduced transferability. Hence, we propose to generate AEs in the semantic image-text feature contrast space, which can project the original feature space into a semantic corpus subspace. The proposed semantic-aligned subspace can reduce the image feature redundancy, thereby improving adversarial transferability. Extensive experiments across different datasets and models demonstrate that the proposed method can effectively improve adversarial transferability and outperform state-of-the-art adversarial attack methods. The code is released at https://github.com/jiaxiaojunQAQ/SA-AET.
Abstract:Recently, Text-to-Image(T2I) models have achieved remarkable success in image generation and editing, yet these models still have many potential issues, particularly in generating inappropriate or Not-Safe-For-Work(NSFW) content. Strengthening attacks and uncovering such vulnerabilities can advance the development of reliable and practical T2I models. Most of the previous works treat T2I models as white-box systems, using gradient optimization to generate adversarial prompts. However, accessing the model's gradient is often impossible in real-world scenarios. Moreover, existing defense methods, those using gradient masking, are designed to prevent attackers from obtaining accurate gradient information. While some black-box jailbreak attacks have been explored, these typically rely on simply replacing sensitive words, leading to suboptimal attack performance. To address this issue, we introduce a two-stage query-based black-box attack method utilizing random search. In the first stage, we establish a preliminary prompt by maximizing the semantic similarity between the adversarial and target harmful prompts. In the second stage, we use this initial prompt to refine our approach, creating a detailed adversarial prompt aimed at jailbreaking and maximizing the similarity in image features between the images generated from this prompt and those produced by the target harmful prompt. Extensive experiments validate the effectiveness of our method in attacking the latest prompt checkers, post-hoc image checkers, securely trained T2I models, and online commercial models.
Abstract:Vision-Large-Language-Models (Vision-LLMs) are increasingly being integrated into autonomous driving (AD) systems due to their advanced visual-language reasoning capabilities, targeting the perception, prediction, planning, and control mechanisms. However, Vision-LLMs have demonstrated susceptibilities against various types of adversarial attacks, which would compromise their reliability and safety. To further explore the risk in AD systems and the transferability of practical threats, we propose to leverage typographic attacks against AD systems relying on the decision-making capabilities of Vision-LLMs. Different from the few existing works developing general datasets of typographic attacks, this paper focuses on realistic traffic scenarios where these attacks can be deployed, on their potential effects on the decision-making autonomy, and on the practical ways in which these attacks can be physically presented. To achieve the above goals, we first propose a dataset-agnostic framework for automatically generating false answers that can mislead Vision-LLMs' reasoning. Then, we present a linguistic augmentation scheme that facilitates attacks at image-level and region-level reasoning, and we extend it with attack patterns against multiple reasoning tasks simultaneously. Based on these, we conduct a study on how these attacks can be realized in physical traffic scenarios. Through our empirical study, we evaluate the effectiveness, transferability, and realizability of typographic attacks in traffic scenes. Our findings demonstrate particular harmfulness of the typographic attacks against existing Vision-LLMs (e.g., LLaVA, Qwen-VL, VILA, and Imp), thereby raising community awareness of vulnerabilities when incorporating such models into AD systems. We will release our source code upon acceptance.
Abstract:Vision-language pre-training (VLP) models exhibit remarkable capabilities in comprehending both images and text, yet they remain susceptible to multimodal adversarial examples (AEs). Strengthening adversarial attacks and uncovering vulnerabilities, especially common issues in VLP models (e.g., high transferable AEs), can stimulate further research on constructing reliable and practical VLP models. A recent work (i.e., Set-level guidance attack) indicates that augmenting image-text pairs to increase AE diversity along the optimization path enhances the transferability of adversarial examples significantly. However, this approach predominantly emphasizes diversity around the online adversarial examples (i.e., AEs in the optimization period), leading to the risk of overfitting the victim model and affecting the transferability. In this study, we posit that the diversity of adversarial examples towards the clean input and online AEs are both pivotal for enhancing transferability across VLP models. Consequently, we propose using diversification along the intersection region of adversarial trajectory to expand the diversity of AEs. To fully leverage the interaction between modalities, we introduce text-guided adversarial example selection during optimization. Furthermore, to further mitigate the potential overfitting, we direct the adversarial text deviating from the last intersection region along the optimization path, rather than adversarial images as in existing methods. Extensive experiments affirm the effectiveness of our method in improving transferability across various VLP models and downstream vision-and-language tasks (e.g., Image-Text Retrieval(ITR), Visual Grounding(VG), Image Captioning(IC)).