Abstract:Medical image classification has developed rapidly under the impetus of the convolutional neural network (CNN). Due to the fixed size of the receptive field of the convolution kernel, it is difficult to capture the global features of medical images. Although the self-attention-based Transformer can model long-range dependencies, it has high computational complexity and lacks local inductive bias. Much research has demonstrated that global and local features are crucial for image classification. However, medical images have a lot of noisy, scattered features, intra-class variation, and inter-class similarities. This paper proposes a three-branch hierarchical multi-scale feature fusion network structure termed as HiFuse for medical image classification as a new method. It can fuse the advantages of Transformer and CNN from multi-scale hierarchies without destroying the respective modeling so as to improve the classification accuracy of various medical images. A parallel hierarchy of local and global feature blocks is designed to efficiently extract local features and global representations at various semantic scales, with the flexibility to model at different scales and linear computational complexity relevant to image size. Moreover, an adaptive hierarchical feature fusion block (HFF block) is designed to utilize the features obtained at different hierarchical levels comprehensively. The HFF block contains spatial attention, channel attention, residual inverted MLP, and shortcut to adaptively fuse semantic information between various scale features of each branch. The accuracy of our proposed model on the ISIC2018 dataset is 7.6% higher than baseline, 21.5% on the Covid-19 dataset, and 10.4% on the Kvasir dataset. Compared with other advanced models, the HiFuse model performs the best. Our code is open-source and available from https://github.com/huoxiangzuo/HiFuse.
Abstract:With the rapid development of self-supervised learning (e.g., contrastive learning), the importance of having large-scale images (even without annotations) for training a more generalizable AI model has been widely recognized in medical image analysis. However, collecting large-scale task-specific unannotated data at scale can be challenging for individual labs. Existing online resources, such as digital books, publications, and search engines, provide a new resource for obtaining large-scale images. However, published images in healthcare (e.g., radiology and pathology) consist of a considerable amount of compound figures with subplots. In order to extract and separate compound figures into usable individual images for downstream learning, we propose a simple compound figure separation (SimCFS) framework without using the traditionally required detection bounding box annotations, with a new loss function and a hard case simulation. Our technical contribution is four-fold: (1) we introduce a simulation-based training framework that minimizes the need for resource extensive bounding box annotations; (2) we propose a new side loss that is optimized for compound figure separation; (3) we propose an intra-class image augmentation method to simulate hard cases; and (4) to the best of our knowledge, this is the first study that evaluates the efficacy of leveraging self-supervised learning with compound image separation. From the results, the proposed SimCFS achieved state-of-the-art performance on the ImageCLEF 2016 Compound Figure Separation Database. The pretrained self-supervised learning model using large-scale mined figures improved the accuracy of downstream image classification tasks with a contrastive learning algorithm. The source code of SimCFS is made publicly available at https://github.com/hrlblab/ImageSeperation.
Abstract:Comprehensive semantic segmentation on renal pathological images is challenging due to the heterogeneous scales of the objects. For example, on a whole slide image (WSI), the cross-sectional areas of glomeruli can be 64 times larger than that of the peritubular capillaries, making it impractical to segment both objects on the same patch, at the same scale. To handle this scaling issue, prior studies have typically trained multiple segmentation networks in order to match the optimal pixel resolution of heterogeneous tissue types. This multi-network solution is resource-intensive and fails to model the spatial relationship between tissue types. In this paper, we propose the Omni-Seg+ network, a scale-aware dynamic neural network that achieves multi-object (six tissue types) and multi-scale (5X to 40X scale) pathological image segmentation via a single neural network. The contribution of this paper is three-fold: (1) a novel scale-aware controller is proposed to generalize the dynamic neural network from single-scale to multi-scale; (2) semi-supervised consistency regularization of pseudo-labels is introduced to model the inter-scale correlation of unannotated tissue types into a single end-to-end learning paradigm; and (3) superior scale-aware generalization is evidenced by directly applying a model trained on human kidney images to mouse kidney images, without retraining. By learning from ~150,000 human pathological image patches from six tissue types at three different resolutions, our approach achieved superior segmentation performance according to human visual assessment and evaluation of image-omics (i.e., spatial transcriptomics). The official implementation is available at https://github.com/ddrrnn123/Omni-Seg.
Abstract:The quantitative detection, segmentation, and characterization of glomeruli from high-resolution whole slide imaging (WSI) play essential roles in the computer-assisted diagnosis and scientific research in digital renal pathology. Historically, such comprehensive quantification requires extensive programming skills in order to be able to handle heterogeneous and customized computational tools. To bridge the gap of performing glomerular quantification for non-technical users, we develop the Glo-In-One toolkit to achieve holistic glomerular detection, segmentation, and characterization via a single line of command. Additionally, we release a large-scale collection of 30,000 unlabeled glomerular images to further facilitate the algorithmic development of self-supervised deep learning. The inputs of the Glo-In-One toolkit are WSIs, while the outputs are (1) WSI-level multi-class circle glomerular detection results (which can be directly manipulated with ImageScope), (2) glomerular image patches with segmentation masks, and (3) different lesion types. To leverage the performance of the Glo-In-One toolkit, we introduce self-supervised deep learning to glomerular quantification via large-scale web image mining. The GGS fine-grained classification model achieved a decent performance compared with baseline supervised methods while only using 10% of the annotated data. The glomerular detection achieved an average precision of 0.627 with circle representations, while the glomerular segmentation achieved a 0.955 patch-wise Dice Similarity Coefficient (DSC).
Abstract:Recent Multiple Object Tracking (MOT) methods have gradually attempted to integrate object detection and instance re-identification (Re-ID) into a united network to form a one-stage solution. Typically, these methods use two separated branches within a single network to accomplish detection and Re-ID respectively without studying the inter-relationship between them, which inevitably impedes the tracking performance. In this paper, we propose an online multi-object tracking framework based on a hierarchical single-branch network to solve this problem. Specifically, the proposed single-branch network utilizes an improved Hierarchical Online In-stance Matching (iHOIM) loss to explicitly model the inter-relationship between object detection and Re-ID. Our novel iHOIM loss function unifies the objectives of the two sub-tasks and encourages better detection performance and feature learning even in extremely crowded scenes. Moreover, we propose to introduce the object positions, predicted by a motion model, as region proposals for subsequent object detection, where the intuition is that detection results and motion predictions can complement each other in different scenarios. Experimental results on MOT16 and MOT20 datasets show that we can achieve state-of-the-art tracking performance, and the ablation study verifies the effectiveness of each proposed component.
Abstract:Due to its fast retrieval and storage efficiency capabilities, hashing has been widely used in nearest neighbor retrieval tasks. By using deep learning based techniques, hashing can outperform non-learning based hashing in many applications. However, there are some limitations to previous learning based hashing methods (e.g., the learned hash codes are not discriminative due to the hashing methods being unable to discover rich semantic information and the training strategy having difficulty optimizing the discrete binary codes). In this paper, we propose a novel learning based hashing method, named \textbf{\underline{A}}symmetric \textbf{\underline{D}}eep \textbf{\underline{S}}emantic \textbf{\underline{Q}}uantization (\textbf{ADSQ}). \textbf{ADSQ} is implemented using three stream frameworks, which consists of one \emph{LabelNet} and two \emph{ImgNets}. The \emph{LabelNet} leverages three fully-connected layers, which is used to capture rich semantic information between image pairs. For the two \emph{ImgNets}, they each adopt the same convolutional neural network structure, but with different weights (i.e., asymmetric convolutional neural networks). The two \emph{ImgNets} are used to generate discriminative compact hash codes. Specifically, the function of the \emph{LabelNet} is to capture rich semantic information that is used to guide the two \emph{ImgNets} in minimizing the gap between the real-continuous features and discrete binary codes. By doing this, \textbf{ADSQ} can make full use of the most critical semantic information to guide the feature learning process and consider the consistency of the common semantic space and Hamming space. Results from our experiments demonstrate that \textbf{ADSQ} can generate high discriminative compact hash codes and it outperforms current state-of-the-art methods on three benchmark datasets, CIFAR-10, NUS-WIDE, and ImageNet.
Abstract:Human Activity Recognition (HAR) using deep neural network has become a hot topic in human-computer interaction. Machine can effectively identify human naturalistic activities by learning from a large collection of sensor data. Activity recognition is not only an interesting research problem, but also has many real-world practical applications. Based on the success of residual networks in achieving a high level of aesthetic representation of the automatic learning, we propose a novel \textbf{D}ual \textbf{R}esidual \textbf{N}etwork, named DRN. DRN is implemented using two identical path frameworks consisting of (1) a short time window, which is used to capture spatial features, and (2) a long time window, which is used to capture fine temporal features. The long time window path can be made very lightweight by reducing its channel capacity, yet still being able to learn useful temporal representations for activity recognition. In this paper, we mainly focus on proposing a new model to improve the accuracy of HAR. In order to demonstrate the effectiveness of DRN model, we carried out extensive experiments and compared with conventional recognition methods (HC, CBH, CBS) and learning-based methods (AE, MLP, CNN, LSTM, Hybrid, ResNet). The benchmark datasets (OPPORTUNITY, UniMiB-SHAR) were adopted by our experiments. Results from our experiments show that our model is effective in recognizing human activities via wearable datasets. We discuss the influence of networks parameters on performance to provide insights about its optimization.
Abstract:Deep Convolutional Neural Networks (DCNNs) are currently popular in human activity recognition applications. However, in the face of modern artificial intelligence sensor-based games, many research achievements cannot be practically applied on portable devices. DCNNs are typically resource-intensive and too large to be deployed on portable devices, thus this limits the practical application of complex activity detection. In addition, since portable devices do not possess high-performance Graphic Processing Units (GPUs), there is hardly any improvement in Action Game (ACT) experience. Besides, in order to deal with multi-sensor collaboration, all previous human activity recognition models typically treated the representations from different sensor signal sources equally. However, distinct types of activities should adopt different fusion strategies. In this paper, a novel scheme is proposed. This scheme is used to train 2-bit Convolutional Neural Networks with weights and activations constrained to {-0.5,0,0.5}. It takes into account the correlation between different sensor signal sources and the activity types. This model, which we refer to as DFTerNet, aims at producing a more reliable inference and better trade-offs for practical applications. Our basic idea is to exploit quantization of weights and activations directly in pre-trained filter banks and adopt dynamic fusion strategies for different activity types. Experiments demonstrate that by using dynamic fusion strategy can exceed the baseline model performance by up to ~5% on activity recognition like OPPORTUNITY and PAMAP2 datasets. Using the quantization method proposed, we were able to achieve performances closer to that of full-precision counterpart. These results were also verified using the UniMiB-SHAR dataset. In addition, the proposed method can achieve ~9x acceleration on CPUs and ~11x memory saving.
Abstract:The fast-growing amount of information on the Internet makes the research in automatic document summarization very urgent. It is an effective solution for information overload. Many approaches have been proposed based on different strategies, such as latent semantic analysis (LSA). However, LSA, when applied to document summarization, has some limitations which diminish its performance. In this work, we try to overcome these limitations by applying statistic and linear algebraic approaches combined with syntactic and semantic processing of text. First, the part of speech tagger is utilized to reduce the dimension of LSA. Then, the weight of the term in four adjacent sentences is added to the weighting schemes while calculating the input matrix to take into account the word order and the syntactic relations. In addition, a new LSA-based sentence selection algorithm is proposed, in which the term description is combined with sentence description for each topic which in turn makes the generated summary more informative and diverse. To ensure the effectiveness of the proposed LSA-based sentence selection algorithm, extensive experiment on Arabic and English are done. Four datasets are used to evaluate the new model, Linguistic Data Consortium (LDC) Arabic Newswire-a corpus, Essex Arabic Summaries Corpus (EASC), DUC2002, and Multilingual MSS 2015 dataset. Experimental results on the four datasets show the effectiveness of the proposed model on Arabic and English datasets. It performs comprehensively better compared to the state-of-the-art methods.