MULTISPEECH
Abstract:Training AI foundation models has emerged as a promising large-scale learning approach for addressing real-world healthcare challenges, including digital pathology. While many of these models have been developed for tasks like disease diagnosis and tissue quantification using extensive and diverse training datasets, their readiness for deployment on some arguably simplest tasks, such as nuclei segmentation within a single organ (e.g., the kidney), remains uncertain. This paper seeks to answer this key question, "How good are we?", by thoroughly evaluating the performance of recent cell foundation models on a curated multi-center, multi-disease, and multi-species external testing dataset. Additionally, we tackle a more challenging question, "How can we improve?", by developing and assessing human-in-the-loop data enrichment strategies aimed at enhancing model performance while minimizing the reliance on pixel-level human annotation. To address the first question, we curated a multicenter, multidisease, and multispecies dataset consisting of 2,542 kidney whole slide images (WSIs). Three state-of-the-art (SOTA) cell foundation models-Cellpose, StarDist, and CellViT-were selected for evaluation. To tackle the second question, we explored data enrichment algorithms by distilling predictions from the different foundation models with a human-in-the-loop framework, aiming to further enhance foundation model performance with minimal human efforts. Our experimental results showed that all three foundation models improved over their baselines with model fine-tuning with enriched data. Interestingly, the baseline model with the highest F1 score does not yield the best segmentation outcomes after fine-tuning. This study establishes a benchmark for the development and deployment of cell vision foundation models tailored for real-world data applications.
Abstract:Distant-microphone meeting transcription is a challenging task. State-of-the-art end-to-end speaker-attributed automatic speech recognition (SA-ASR) architectures lack a multichannel noise and reverberation reduction front-end, which limits their performance. In this paper, we introduce a joint beamforming and SA-ASR approach for real meeting transcription. We first describe a data alignment and augmentation method to pretrain a neural beamformer on real meeting data. We then compare fixed, hybrid, and fully neural beamformers as front-ends to the SA-ASR model. Finally, we jointly optimize the fully neural beamformer and the SA-ASR model. Experiments on the real AMI corpus show that,while state-of-the-art multi-frame cross-channel attention based channel fusion fails to improve ASR performance, fine-tuning SA-ASR on the fixed beamformer's output and jointly fine-tuning SA-ASR with the neural beamformer reduce the word error rate by 8% and 9% relative, respectively.
Abstract:To address the occlusion issues in person Re-Identification (ReID) tasks, many methods have been proposed to extract part features by introducing external spatial information. However, due to missing part appearance information caused by occlusion and noisy spatial information from external model, these purely vision-based approaches fail to correctly learn the features of human body parts from limited training data and struggle in accurately locating body parts, ultimately leading to misaligned part features. To tackle these challenges, we propose a Prompt-guided Feature Disentangling method (ProFD), which leverages the rich pre-trained knowledge in the textual modality facilitate model to generate well-aligned part features. ProFD first designs part-specific prompts and utilizes noisy segmentation mask to preliminarily align visual and textual embedding, enabling the textual prompts to have spatial awareness. Furthermore, to alleviate the noise from external masks, ProFD adopts a hybrid-attention decoder, ensuring spatial and semantic consistency during the decoding process to minimize noise impact. Additionally, to avoid catastrophic forgetting, we employ a self-distillation strategy, retaining pre-trained knowledge of CLIP to mitigate over-fitting. Evaluation results on the Market1501, DukeMTMC-ReID, Occluded-Duke, Occluded-ReID, and P-DukeMTMC datasets demonstrate that ProFD achieves state-of-the-art results. Our project is available at: https://github.com/Cuixxx/ProFD.
Abstract:Cell nuclei instance segmentation is a crucial task in digital kidney pathology. Traditional automatic segmentation methods often lack generalizability when applied to unseen datasets. Recently, the success of foundation models (FMs) has provided a more generalizable solution, potentially enabling the segmentation of any cell type. In this study, we perform a large-scale evaluation of three widely used state-of-the-art (SOTA) cell nuclei foundation models (Cellpose, StarDist, and CellViT). Specifically, we created a highly diverse evaluation dataset consisting of 2,542 kidney whole slide images (WSIs) collected from both human and rodent sources, encompassing various tissue types, sizes, and staining methods. To our knowledge, this is the largest-scale evaluation of its kind to date. Our quantitative analysis of the prediction distribution reveals a persistent performance gap in kidney pathology. Among the evaluated models, CellViT demonstrated superior performance in segmenting nuclei in kidney pathology. However, none of the foundation models are perfect; a performance gap remains in general nuclei segmentation for kidney pathology.
Abstract:Cervical Cancer continues to be the leading gynecological malignancy, posing a persistent threat to women's health on a global scale. Early screening via cytology Whole Slide Image (WSI) diagnosis is critical to prevent this Cancer progression and improve survival rate, but pathologist's single test suffers inevitable false negative due to the immense number of cells that need to be reviewed within a WSI. Though computer-aided automated diagnostic models can serve as strong complement for pathologists, their effectiveness is hampered by the paucity of extensive and detailed annotations, coupled with the limited interpretability and robustness. These factors significantly hinder their practical applicability and reliability in clinical settings. To tackle these challenges, we develop an AI approach, which is a Scalable Technology for Robust and Interpretable Diagnosis built on Extensive data (STRIDE) of cervical cytology. STRIDE addresses the bottleneck of limited annotations by integrating patient-level labels with a small portion of cell-level labels through an end-to-end training strategy, facilitating scalable learning across extensive datasets. To further improve the robustness to real-world domain shifts of cytology slide-making and imaging, STRIDE employs color adversarial samples training that mimic staining and imaging variations. Lastly, to achieve pathologist-level interpretability for the trustworthiness in clinical settings, STRIDE can generate explanatory textual descriptions that simulates pathologists' diagnostic processes by cell image feature and textual description alignment. Conducting extensive experiments and evaluations in 183 medical centers with a dataset of 341,889 WSIs and 0.1 billion cells from cervical cytology patients, STRIDE has demonstrated a remarkable superiority over previous state-of-the-art techniques.
Abstract:Moving from animal models to human applications in preclinical research encompasses a broad spectrum of disciplines in medical science. A fundamental element in the development of new drugs, treatments, diagnostic methods, and in deepening our understanding of disease processes is the accurate measurement of kidney tissues. Past studies have demonstrated the viability of translating glomeruli segmentation techniques from mouse models to human applications. Yet, these investigations tend to neglect the complexities involved in segmenting pathological glomeruli affected by different lesions. Such lesions present a wider range of morphological variations compared to healthy glomerular tissue, which are arguably more valuable than normal glomeruli in clinical practice. Furthermore, data on lesions from animal models can be more readily scaled up from disease models and whole kidney biopsies. This brings up a question: ``\textit{Can a pathological segmentation model trained on mouse models be effectively applied to human patients?}" To answer this question, we introduced GLAM, a deep learning study for fine-grained segmentation of human kidney lesions using a mouse model, addressing mouse-to-human transfer learning, by evaluating different learning strategies for segmenting human pathological lesions using zero-shot transfer learning and hybrid learning by leveraging mouse samples. From the results, the hybrid learning model achieved superior performance.
Abstract:Data sharing in the medical image analysis field has potential yet remains underappreciated. The aim is often to share datasets efficiently with other sites to train models effectively. One possible solution is to avoid transferring the entire dataset while still achieving similar model performance. Recent progress in data distillation within computer science offers promising prospects for sharing medical data efficiently without significantly compromising model effectiveness. However, it remains uncertain whether these methods would be applicable to medical imaging, since medical and natural images are distinct fields. Moreover, it is intriguing to consider what level of performance could be achieved with these methods. To answer these questions, we conduct investigations on a variety of leading data distillation methods, in different contexts of medical imaging. We evaluate the feasibility of these methods with extensive experiments in two aspects: 1) Assess the impact of data distillation across multiple datasets characterized by minor or great variations. 2) Explore the indicator to predict the distillation performance. Our extensive experiments across multiple medical datasets reveal that data distillation can significantly reduce dataset size while maintaining comparable model performance to that achieved with the full dataset, suggesting that a small, representative sample of images can serve as a reliable indicator of distillation success. This study demonstrates that data distillation is a viable method for efficient and secure medical data sharing, with the potential to facilitate enhanced collaborative research and clinical applications.
Abstract:The Vision Foundation Model has recently gained attention in medical image analysis. Its zero-shot learning capabilities accelerate AI deployment and enhance the generalizability of clinical applications. However, segmenting pathological images presents a special focus on the flexibility of segmentation targets. For instance, a single click on a Whole Slide Image (WSI) could signify a cell, a functional unit, or layers, adding layers of complexity to the segmentation tasks. Current models primarily predict potential outcomes but lack the flexibility needed for physician input. In this paper, we explore the potential of enhancing segmentation model flexibility by introducing various task prompts through a Large Language Model (LLM) alongside traditional task tokens. Our contribution is in four-fold: (1) we construct a computational-efficient pipeline that uses finetuned language prompts to guide flexible multi-class segmentation; (2) We compare segmentation performance with fixed prompts against free-text; (3) We design a multi-task kidney pathology segmentation dataset and the corresponding various free-text prompts; and (4) We evaluate our approach on the kidney pathology dataset, assessing its capacity to new cases during inference.
Abstract:In digital pathology, the traditional method for deep learning-based image segmentation typically involves a two-stage process: initially segmenting high-resolution whole slide images (WSI) into smaller patches (e.g., 256x256, 512x512, 1024x1024) and subsequently reconstructing them to their original scale. This method often struggles to capture the complex details and vast scope of WSIs. In this paper, we propose the holistic histopathology (HoloHisto) segmentation method to achieve end-to-end segmentation on gigapixel WSIs, whose maximum resolution is above 80,000$\times$70,000 pixels. HoloHisto fundamentally shifts the paradigm of WSI segmentation to an end-to-end learning fashion with 1) a large (4K) resolution base patch for elevated visual information inclusion and efficient processing, and 2) a novel sequential tokenization mechanism to properly model the contextual relationships and efficiently model the rich information from the 4K input. To our best knowledge, HoloHisto presents the first holistic approach for gigapixel resolution WSI segmentation, supporting direct I/O of complete WSI and their corresponding gigapixel masks. Under the HoloHisto platform, we unveil a random 4K sampler that transcends ultra-high resolution, delivering 31 and 10 times more pixels than standard 2D and 3D patches, respectively, for advancing computational capabilities. To facilitate efficient 4K resolution dense prediction, we leverage sequential tokenization, utilizing a pre-trained image tokenizer to group image features into a discrete token grid. To assess the performance, our team curated a new kidney pathology image segmentation (KPIs) dataset with WSI-level glomeruli segmentation from whole mouse kidneys. From the results, HoloHisto-4K delivers remarkable performance gains over previous state-of-the-art models.
Abstract:Panoramic image segmentation in computational pathology presents a remarkable challenge due to the morphologically complex and variably scaled anatomy. For instance, the intricate organization in kidney pathology spans multiple layers, from regions like the cortex and medulla to functional units such as glomeruli, tubules, and vessels, down to various cell types. In this paper, we propose a novel Hierarchical Adaptive Taxonomy Segmentation (HATs) method, which is designed to thoroughly segment panoramic views of kidney structures by leveraging detailed anatomical insights. Our approach entails (1) the innovative HATs technique which translates spatial relationships among 15 distinct object classes into a versatile "plug-and-play" loss function that spans across regions, functional units, and cells, (2) the incorporation of anatomical hierarchies and scale considerations into a unified simple matrix representation for all panoramic entities, (3) the adoption of the latest AI foundation model (EfficientSAM) as a feature extraction tool to boost the model's adaptability, yet eliminating the need for manual prompt generation in conventional segment anything model (SAM). Experimental findings demonstrate that the HATs method offers an efficient and effective strategy for integrating clinical insights and imaging precedents into a unified segmentation model across more than 15 categories. The official implementation is publicly available at https://github.com/hrlblab/HATs.