Abstract:Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
Abstract:Multimodal large language models (MLLMs) have demonstrated remarkable potential for enhancing scene understanding in autonomous driving systems through powerful logical reasoning capabilities. However, the deployment of these models faces significant challenges due to their substantial parameter sizes and computational demands, which often exceed the constraints of onboard computation. One major limitation arises from the large number of visual tokens required to capture fine-grained and long-context visual information, leading to increased latency and memory consumption. To address this issue, we propose Video Token Sparsification (VTS), a novel approach that leverages the inherent redundancy in consecutive video frames to significantly reduce the total number of visual tokens while preserving the most salient information. VTS employs a lightweight CNN-based proposal model to adaptively identify key frames and prune less informative tokens, effectively mitigating hallucinations and increasing inference throughput without compromising performance. We conduct comprehensive experiments on the DRAMA and LingoQA benchmarks, demonstrating the effectiveness of VTS in achieving up to a 33\% improvement in inference throughput and a 28\% reduction in memory usage compared to the baseline without compromising performance.
Abstract:Pre-trained vision-language models (VLMs) have enabled significant progress in open vocabulary computer vision tasks such as image classification, object detection and image segmentation. Some recent works have focused on extending VLMs to open vocabulary single label action classification in videos. However, previous methods fall short in holistic video understanding which requires the ability to simultaneously recognize multiple actions and entities e.g., objects in the video in an open vocabulary setting. We formulate this problem as open vocabulary multilabel video classification and propose a method to adapt a pre-trained VLM such as CLIP to solve this task. We leverage large language models (LLMs) to provide semantic guidance to the VLM about class labels to improve its open vocabulary performance with two key contributions. First, we propose an end-to-end trainable architecture that learns to prompt an LLM to generate soft attributes for the CLIP text-encoder to enable it to recognize novel classes. Second, we integrate a temporal modeling module into CLIP's vision encoder to effectively model the spatio-temporal dynamics of video concepts as well as propose a novel regularized finetuning technique to ensure strong open vocabulary classification performance in the video domain. Our extensive experimentation showcases the efficacy of our approach on multiple benchmark datasets.
Abstract:Dilemma zones at signalized intersections present a commonly occurring but unsolved challenge for both drivers and traffic operators. Onsets of the yellow lights prompt varied responses from different drivers: some may brake abruptly, compromising the ride comfort, while others may accelerate, increasing the risk of red-light violations and potential safety hazards. Such diversity in drivers' stop-or-go decisions may result from not only surrounding traffic conditions, but also personalized driving behaviors. To this end, identifying personalized driving behaviors and integrating them into advanced driver assistance systems (ADAS) to mitigate the dilemma zone problem presents an intriguing scientific question. In this study, we employ a game engine-based (i.e., CARLA-enabled) driving simulator to collect high-resolution vehicle trajectories, incoming traffic signal phase and timing information, and stop-or-go decisions from four subject drivers in various scenarios. This approach allows us to analyze personalized driving behaviors in dilemma zones and develop a Personalized Transformer Encoder to predict individual drivers' stop-or-go decisions. The results show that the Personalized Transformer Encoder improves the accuracy of predicting driver decision-making in the dilemma zone by 3.7% to 12.6% compared to the Generic Transformer Encoder, and by 16.8% to 21.6% over the binary logistic regression model.
Abstract:Reliable prediction of vehicle trajectories at signalized intersections is crucial to urban traffic management and autonomous driving systems. However, it presents unique challenges, due to the complex roadway layout at intersections, involvement of traffic signal controls, and interactions among different types of road users. To address these issues, we present in this paper a novel model called Knowledge-Informed Generative Adversarial Network (KI-GAN), which integrates both traffic signal information and multi-vehicle interactions to predict vehicle trajectories accurately. Additionally, we propose a specialized attention pooling method that accounts for vehicle orientation and proximity at intersections. Based on the SinD dataset, our KI-GAN model is able to achieve an Average Displacement Error (ADE) of 0.05 and a Final Displacement Error (FDE) of 0.12 for a 6-second observation and 6-second prediction cycle. When the prediction window is extended to 9 seconds, the ADE and FDE values are further reduced to 0.11 and 0.26, respectively. These results demonstrate the effectiveness of the proposed KI-GAN model in vehicle trajectory prediction under complex scenarios at signalized intersections, which represents a significant advancement in the target field.
Abstract:We present LaMPilot, a novel framework for planning in the field of autonomous driving, rethinking the task as a code-generation process that leverages established behavioral primitives. This approach aims to address the challenge of interpreting and executing spontaneous user instructions such as "overtake the car ahead," which have typically posed difficulties for existing frameworks. We introduce the LaMPilot benchmark specifically designed to quantitatively evaluate the efficacy of Large Language Models (LLMs) in translating human directives into actionable driving policies. We then evaluate a wide range of state-of-the-art code generation language models on tasks from the LaMPilot Benchmark. The results of the experiments showed that GPT-4, with human feedback, achieved an impressive task completion rate of 92.7% and a minimal collision rate of 0.9%. To encourage further investigation in this area, our code and dataset will be made available.
Abstract:Concept bottleneck models have been successfully used for explainable machine learning by encoding information within the model with a set of human-defined concepts. In the context of human-assisted or autonomous driving, explainability models can help user acceptance and understanding of decisions made by the autonomous vehicle, which can be used to rationalize and explain driver or vehicle behavior. We propose a new approach using concept bottlenecks as visual features for control command predictions and explanations of user and vehicle behavior. We learn a human-understandable concept layer that we use to explain sequential driving scenes while learning vehicle control commands. This approach can then be used to determine whether a change in a preferred gap or steering commands from a human (or autonomous vehicle) is led by an external stimulus or change in preferences. We achieve competitive performance to latent visual features while gaining interpretability within our model setup.
Abstract:Accurate prediction of vehicle trajectories is vital for advanced driver assistance systems and autonomous vehicles. Existing methods mainly rely on generic trajectory predictions derived from large datasets, overlooking the personalized driving patterns of individual drivers. To address this gap, we propose an approach for interaction-aware personalized vehicle trajectory prediction that incorporates temporal graph neural networks. Our method utilizes Graph Convolution Networks (GCN) and Long Short-Term Memory (LSTM) to model the spatio-temporal interactions between target vehicles and their surrounding traffic. To personalize the predictions, we establish a pipeline that leverages transfer learning: the model is initially pre-trained on a large-scale trajectory dataset and then fine-tuned for each driver using their specific driving data. We employ human-in-the-loop simulation to collect personalized naturalistic driving trajectories and corresponding surrounding vehicle trajectories. Experimental results demonstrate the superior performance of our personalized GCN-LSTM model, particularly for longer prediction horizons, compared to its generic counterpart. Moreover, the personalized model outperforms individual models created without pre-training, emphasizing the significance of pre-training on a large dataset to avoid overfitting. By incorporating personalization, our approach enhances trajectory prediction accuracy.
Abstract:Ensuring traffic safety and preventing accidents is a critical goal in daily driving, where the advancement of computer vision technologies can be leveraged to achieve this goal. In this paper, we present a multi-view, multi-scale framework for naturalistic driving action recognition and localization in untrimmed videos, namely M$^2$DAR, with a particular focus on detecting distracted driving behaviors. Our system features a weight-sharing, multi-scale Transformer-based action recognition network that learns robust hierarchical representations. Furthermore, we propose a new election algorithm consisting of aggregation, filtering, merging, and selection processes to refine the preliminary results from the action recognition module across multiple views. Extensive experiments conducted on the 7th AI City Challenge Track 3 dataset demonstrate the effectiveness of our approach, where we achieved an overlap score of 0.5921 on the A2 test set. Our source code is available at \url{https://github.com/PurdueDigitalTwin/M2DAR}.
Abstract:Driver intention prediction seeks to anticipate drivers' actions by analyzing their behaviors with respect to surrounding traffic environments. Existing approaches primarily focus on late-fusion techniques, and neglect the importance of maintaining consistency between predictions and prevailing driving contexts. In this paper, we introduce a new framework called Cross-View Episodic Memory Transformer (CEMFormer), which employs spatio-temporal transformers to learn unified memory representations for an improved driver intention prediction. Specifically, we develop a spatial-temporal encoder to integrate information from both in-cabin and external camera views, along with episodic memory representations to continuously fuse historical data. Furthermore, we propose a novel context-consistency loss that incorporates driving context as an auxiliary supervision signal to improve prediction performance. Comprehensive experiments on the Brain4Cars dataset demonstrate that CEMFormer consistently outperforms existing state-of-the-art methods in driver intention prediction.