Purdue
Abstract:We present FlashSLAM, a novel SLAM approach that leverages 3D Gaussian Splatting for efficient and robust 3D scene reconstruction. Existing 3DGS-based SLAM methods often fall short in sparse view settings and during large camera movements due to their reliance on gradient descent-based optimization, which is both slow and inaccurate. FlashSLAM addresses these limitations by combining 3DGS with a fast vision-based camera tracking technique, utilizing a pretrained feature matching model and point cloud registration for precise pose estimation in under 80 ms - a 90% reduction in tracking time compared to SplaTAM - without costly iterative rendering. In sparse settings, our method achieves up to a 92% improvement in average tracking accuracy over previous methods. Additionally, it accounts for noise in depth sensors, enhancing robustness when using unspecialized devices such as smartphones. Extensive experiments show that FlashSLAM performs reliably across both sparse and dense settings, in synthetic and real-world environments. Evaluations on benchmark datasets highlight its superior accuracy and efficiency, establishing FlashSLAM as a versatile and high-performance solution for SLAM, advancing the state-of-the-art in 3D reconstruction across diverse applications.
Abstract:Path planning in high-dimensional spaces poses significant challenges, particularly in achieving both time efficiency and a fair success rate. To address these issues, we introduce a novel path-planning algorithm, Zonal RL-RRT, that leverages kd-tree partitioning to segment the map into zones while addressing zone connectivity, ensuring seamless transitions between zones. By breaking down the complex environment into multiple zones and using Q-learning as the high-level decision-maker, our algorithm achieves a 3x improvement in time efficiency compared to basic sampling methods such as RRT and RRT* in forest-like maps. Our approach outperforms heuristic-guided methods like BIT* and Informed RRT* by 1.5x in terms of runtime while maintaining robust and reliable success rates across 2D to 6D environments. Compared to learning-based methods like NeuralRRT* and MPNetSMP, as well as the heuristic RRT*J, our algorithm demonstrates, on average, 1.5x better performance in the same environments. We also evaluate the effectiveness of our approach through simulations of the UR10e arm manipulator in the MuJoCo environment. A key observation of our approach lies in its use of zone partitioning and Reinforcement Learning (RL) for adaptive high-level planning allowing the algorithm to accommodate flexible policies across diverse environments, making it a versatile tool for advanced path planning.
Abstract:Embodied Question Answering (EQA) is an essential yet challenging task for robotic home assistants. Recent studies have shown that large vision-language models (VLMs) can be effectively utilized for EQA, but existing works either focus on video-based question answering without embodied exploration or rely on closed-form choice sets. In real-world scenarios, a robotic agent must efficiently explore and accurately answer questions in open-vocabulary settings. To address these challenges, we propose a novel framework called EfficientEQA for open-vocabulary EQA, which enables efficient exploration and accurate answering. In EfficientEQA, the robot actively explores unknown environments using Semantic-Value-Weighted Frontier Exploration, a strategy that prioritizes exploration based on semantic importance provided by calibrated confidence from black-box VLMs to quickly gather relevant information. To generate accurate answers, we employ Retrieval-Augmented Generation (RAG), which utilizes BLIP to retrieve useful images from accumulated observations and VLM reasoning to produce responses without relying on predefined answer choices. Additionally, we detect observations that are highly relevant to the question as outliers, allowing the robot to determine when it has sufficient information to stop exploring and provide an answer. Experimental results demonstrate the effectiveness of our approach, showing an improvement in answering accuracy by over 15% and efficiency, measured in running steps, by over 20% compared to state-of-the-art methods.
Abstract:We propose a novel framework COLLAGE for generating collaborative agent-object-agent interactions by leveraging large language models (LLMs) and hierarchical motion-specific vector-quantized variational autoencoders (VQ-VAEs). Our model addresses the lack of rich datasets in this domain by incorporating the knowledge and reasoning abilities of LLMs to guide a generative diffusion model. The hierarchical VQ-VAE architecture captures different motion-specific characteristics at multiple levels of abstraction, avoiding redundant concepts and enabling efficient multi-resolution representation. We introduce a diffusion model that operates in the latent space and incorporates LLM-generated motion planning cues to guide the denoising process, resulting in prompt-specific motion generation with greater control and diversity. Experimental results on the CORE-4D, and InterHuman datasets demonstrate the effectiveness of our approach in generating realistic and diverse collaborative human-object-human interactions, outperforming state-of-the-art methods. Our work opens up new possibilities for modeling complex interactions in various domains, such as robotics, graphics and computer vision.
Abstract:Despite significant advancements in large language models (LLMs) that enhance robot agents' understanding and execution of natural language (NL) commands, ensuring the agents adhere to user-specified constraints remains challenging, particularly for complex commands and long-horizon tasks. To address this challenge, we present three key insights, equivalence voting, constrained decoding, and domain-specific fine-tuning, which significantly enhance LLM planners' capability in handling complex tasks. Equivalence voting ensures consistency by generating and sampling multiple Linear Temporal Logic (LTL) formulas from NL commands, grouping equivalent LTL formulas, and selecting the majority group of formulas as the final LTL formula. Constrained decoding then uses the generated LTL formula to enforce the autoregressive inference of plans, ensuring the generated plans conform to the LTL. Domain-specific fine-tuning customizes LLMs to produce safe and efficient plans within specific task domains. Our approach, Safe Efficient LLM Planner (SELP), combines these insights to create LLM planners to generate plans adhering to user commands with high confidence. We demonstrate the effectiveness and generalizability of SELP across different robot agents and tasks, including drone navigation and robot manipulation. For drone navigation tasks, SELP outperforms state-of-the-art planners by 10.8% in safety rate (i.e., finishing tasks conforming to NL commands) and by 19.8% in plan efficiency. For robot manipulation tasks, SELP achieves 20.4% improvement in safety rate. Our datasets for evaluating NL-to-LTL and robot task planning will be released in github.com/lt-asset/selp.
Abstract:We introduce Go-SLAM, a novel framework that utilizes 3D Gaussian Splatting SLAM to reconstruct dynamic environments while embedding object-level information within the scene representations. This framework employs advanced object segmentation techniques, assigning a unique identifier to each Gaussian splat that corresponds to the object it represents. Consequently, our system facilitates open-vocabulary querying, allowing users to locate objects using natural language descriptions. Furthermore, the framework features an optimal path generation module that calculates efficient navigation paths for robots toward queried objects, considering obstacles and environmental uncertainties. Comprehensive evaluations in various scene settings demonstrate the effectiveness of our approach in delivering high-fidelity scene reconstructions, precise object segmentation, flexible object querying, and efficient robot path planning. This work represents an additional step forward in bridging the gap between 3D scene reconstruction, semantic object understanding, and real-time environment interactions.
Abstract:By framing reinforcement learning as a sequence modeling problem, recent work has enabled the use of generative models, such as diffusion models, for planning. While these models are effective in predicting long-horizon state trajectories in deterministic environments, they face challenges in dynamic settings with moving obstacles. Effective collision avoidance demands continuous monitoring and adaptive decision-making. While replanning at every timestep could ensure safety, it introduces substantial computational overhead due to the repetitive prediction of overlapping state sequences -- a process that is particularly costly with diffusion models, known for their intensive iterative sampling procedure. We propose an adaptive generative planning approach that dynamically adjusts replanning frequency based on the uncertainty of action predictions. Our method minimizes the need for frequent, computationally expensive, and redundant replanning while maintaining robust collision avoidance performance. In experiments, we obtain a 13.5% increase in the mean trajectory length and a 12.7% increase in mean reward over long-horizon planning, indicating a reduction in collision rates and an improved ability to navigate the environment safely.
Abstract:A team of multiple robots seamlessly and safely working in human-filled public environments requires adaptive task allocation and socially-aware navigation that account for dynamic human behavior. Current approaches struggle with highly dynamic pedestrian movement and the need for flexible task allocation. We propose Hyper-SAMARL, a hypergraph-based system for multi-robot task allocation and socially-aware navigation, leveraging multi-agent reinforcement learning (MARL). Hyper-SAMARL models the environmental dynamics between robots, humans, and points of interest (POIs) using a hypergraph, enabling adaptive task assignment and socially-compliant navigation through a hypergraph diffusion mechanism. Our framework, trained with MARL, effectively captures interactions between robots and humans, adapting tasks based on real-time changes in human activity. Experimental results demonstrate that Hyper-SAMARL outperforms baseline models in terms of social navigation, task completion efficiency, and adaptability in various simulated scenarios.
Abstract:The field of text-to-3D content generation has made significant progress in generating realistic 3D objects, with existing methodologies like Score Distillation Sampling (SDS) offering promising guidance. However, these methods often encounter the "Janus" problem-multi-face ambiguities due to imprecise guidance. Additionally, while recent advancements in 3D gaussian splitting have shown its efficacy in representing 3D volumes, optimization of this representation remains largely unexplored. This paper introduces a unified framework for text-to-3D content generation that addresses these critical gaps. Our approach utilizes multi-view guidance to iteratively form the structure of the 3D model, progressively enhancing detail and accuracy. We also introduce a novel densification algorithm that aligns gaussians close to the surface, optimizing the structural integrity and fidelity of the generated models. Extensive experiments validate our approach, demonstrating that it produces high-quality visual outputs with minimal time cost. Notably, our method achieves high-quality results within half an hour of training, offering a substantial efficiency gain over most existing methods, which require hours of training time to achieve comparable results.
Abstract:While LLMs are proficient at processing text in human conversations, they often encounter difficulties with the nuances of verbal instructions and, thus, remain prone to hallucinate trust in human command. In this work, we present TrustNavGPT, an LLM based audio guided navigation agent that uses affective cues in spoken communication elements such as tone and inflection that convey meaning beyond words, allowing it to assess the trustworthiness of human commands and make effective, safe decisions. Our approach provides a lightweight yet effective approach that extends existing LLMs to model audio vocal features embedded in the voice command and model uncertainty for safe robotic navigation.