China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan, China
Abstract:Recently, 3D Gaussian Splatting (3D-GS) has prevailed in novel view synthesis, achieving high fidelity and efficiency. However, it often struggles to capture rich details and complete geometry. Our analysis highlights a key limitation of 3D-GS caused by the fixed threshold in densification, which balances geometry coverage against detail recovery as the threshold varies. To address this, we introduce a novel densification method, residual split, which adds a downscaled Gaussian as a residual. Our approach is capable of adaptively retrieving details and complementing missing geometry while enabling progressive refinement. To further support this method, we propose a pipeline named ResGS. Specifically, we integrate a Gaussian image pyramid for progressive supervision and implement a selection scheme that prioritizes the densification of coarse Gaussians over time. Extensive experiments demonstrate that our method achieves SOTA rendering quality. Consistent performance improvements can be achieved by applying our residual split on various 3D-GS variants, underscoring its versatility and potential for broader application in 3D-GS-based applications.
Abstract:Recommendation systems are essential for filtering data and retrieving relevant information across various applications. Recent advancements have seen these systems incorporate increasingly large embedding tables, scaling up to tens of terabytes for industrial use. However, the expansion of network parameters in traditional recommendation models has plateaued at tens of millions, limiting further benefits from increased embedding parameters. Inspired by the success of large language models (LLMs), a new approach has emerged that scales network parameters using innovative structures, enabling continued performance improvements. A significant development in this area is Meta's generative recommendation model HSTU, which illustrates the scaling laws of recommendation systems by expanding parameters to thousands of billions. This new paradigm has achieved substantial performance gains in online experiments. In this paper, we aim to enhance the understanding of scaling laws by conducting comprehensive evaluations of large recommendation models. Firstly, we investigate the scaling laws across different backbone architectures of the large recommendation models. Secondly, we conduct comprehensive ablation studies to explore the origins of these scaling laws. We then further assess the performance of HSTU, as the representative of large recommendation models, on complex user behavior modeling tasks to evaluate its applicability. Notably, we also analyze its effectiveness in ranking tasks for the first time. Finally, we offer insights into future directions for large recommendation models. Supplementary materials for our research are available on GitHub at https://github.com/USTC-StarTeam/Large-Recommendation-Models.
Abstract:Embodied Question Answering (EQA) is an essential yet challenging task for robotic home assistants. Recent studies have shown that large vision-language models (VLMs) can be effectively utilized for EQA, but existing works either focus on video-based question answering without embodied exploration or rely on closed-form choice sets. In real-world scenarios, a robotic agent must efficiently explore and accurately answer questions in open-vocabulary settings. To address these challenges, we propose a novel framework called EfficientEQA for open-vocabulary EQA, which enables efficient exploration and accurate answering. In EfficientEQA, the robot actively explores unknown environments using Semantic-Value-Weighted Frontier Exploration, a strategy that prioritizes exploration based on semantic importance provided by calibrated confidence from black-box VLMs to quickly gather relevant information. To generate accurate answers, we employ Retrieval-Augmented Generation (RAG), which utilizes BLIP to retrieve useful images from accumulated observations and VLM reasoning to produce responses without relying on predefined answer choices. Additionally, we detect observations that are highly relevant to the question as outliers, allowing the robot to determine when it has sufficient information to stop exploring and provide an answer. Experimental results demonstrate the effectiveness of our approach, showing an improvement in answering accuracy by over 15% and efficiency, measured in running steps, by over 20% compared to state-of-the-art methods.
Abstract:Reconstructing objects from posed images is a crucial and complex task in computer graphics and computer vision. While NeRF-based neural reconstruction methods have exhibited impressive reconstruction ability, they tend to be time-comsuming. Recent strategies have adopted 3D Gaussian Splatting (3D-GS) for inverse rendering, which have led to quick and effective outcomes. However, these techniques generally have difficulty in producing believable geometries and materials for glossy objects, a challenge that stems from the inherent ambiguities of inverse rendering. To address this, we introduce GlossyGS, an innovative 3D-GS-based inverse rendering framework that aims to precisely reconstruct the geometry and materials of glossy objects by integrating material priors. The key idea is the use of micro-facet geometry segmentation prior, which helps to reduce the intrinsic ambiguities and improve the decomposition of geometries and materials. Additionally, we introduce a normal map prefiltering strategy to more accurately simulate the normal distribution of reflective surfaces. These strategies are integrated into a hybrid geometry and material representation that employs both explicit and implicit methods to depict glossy objects. We demonstrate through quantitative analysis and qualitative visualization that the proposed method is effective to reconstruct high-fidelity geometries and materials of glossy objects, and performs favorably against state-of-the-arts.
Abstract:In the realm of recommendation systems, users exhibit a diverse array of behaviors when interacting with items. This phenomenon has spurred research into learning the implicit semantic relationships between these behaviors to enhance recommendation performance. However, these methods often entail high computational complexity. To address concerns regarding efficiency, pre-training presents a viable solution. Its objective is to extract knowledge from extensive pre-training data and fine-tune the model for downstream tasks. Nevertheless, previous pre-training methods have primarily focused on single-behavior data, while multi-behavior data contains significant noise. Additionally, the fully fine-tuning strategy adopted by these methods still imposes a considerable computational burden. In response to this challenge, we propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation. Specifically, in the pre-training stage, we commence by proposing a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales, thereby facilitating the comprehension of the contextual semantics of multi-behavior sequences. Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module, which generates personalized, progressive, and diverse prompts to fully exploit the potential of the pre-trained model effectively. Extensive experiments on three real-world datasets have unequivocally demonstrated that DPCPL not only exhibits high efficiency and effectiveness, requiring minimal parameter adjustments but also surpasses the state-of-the-art performance across a diverse range of downstream tasks.
Abstract:Recently, 3D Gaussian Splatting(3DGS) has revolutionized neural rendering with its high-quality rendering and real-time speed. However, when it comes to indoor scenes with a significant number of textureless areas, 3DGS yields incomplete and noisy reconstruction results due to the poor initialization of the point cloud and under-constrained optimization. Inspired by the continuity of signed distance field (SDF), which naturally has advantages in modeling surfaces, we present a unified optimizing framework integrating neural SDF with 3DGS. This framework incorporates a learnable neural SDF field to guide the densification and pruning of Gaussians, enabling Gaussians to accurately model scenes even with poor initialized point clouds. At the same time, the geometry represented by Gaussians improves the efficiency of the SDF field by piloting its point sampling. Additionally, we regularize the optimization with normal and edge priors to eliminate geometry ambiguity in textureless areas and improve the details. Extensive experiments in ScanNet and ScanNet++ show that our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis.
Abstract:We present DC-Gaussian, a new method for generating novel views from in-vehicle dash cam videos. While neural rendering techniques have made significant strides in driving scenarios, existing methods are primarily designed for videos collected by autonomous vehicles. However, these videos are limited in both quantity and diversity compared to dash cam videos, which are more widely used across various types of vehicles and capture a broader range of scenarios. Dash cam videos often suffer from severe obstructions such as reflections and occlusions on the windshields, which significantly impede the application of neural rendering techniques. To address this challenge, we develop DC-Gaussian based on the recent real-time neural rendering technique 3D Gaussian Splatting (3DGS). Our approach includes an adaptive image decomposition module to model reflections and occlusions in a unified manner. Additionally, we introduce illumination-aware obstruction modeling to manage reflections and occlusions under varying lighting conditions. Lastly, we employ a geometry-guided Gaussian enhancement strategy to improve rendering details by incorporating additional geometry priors. Experiments on self-captured and public dash cam videos show that our method not only achieves state-of-the-art performance in novel view synthesis, but also accurately reconstructing captured scenes getting rid of obstructions.
Abstract:Language-guided scene-aware human motion generation has great significance for entertainment and robotics. In response to the limitations of existing datasets, we introduce LaserHuman, a pioneering dataset engineered to revolutionize Scene-Text-to-Motion research. LaserHuman stands out with its inclusion of genuine human motions within 3D environments, unbounded free-form natural language descriptions, a blend of indoor and outdoor scenarios, and dynamic, ever-changing scenes. Diverse modalities of capture data and rich annotations present great opportunities for the research of conditional motion generation, and can also facilitate the development of real-life applications. Moreover, to generate semantically consistent and physically plausible human motions, we propose a multi-conditional diffusion model, which is simple but effective, achieving state-of-the-art performance on existing datasets.
Abstract:The advent of 3D Gaussian Splatting (3DGS) has recently brought about a revolution in the field of neural rendering, facilitating high-quality renderings at real-time speed. However, 3DGS heavily depends on the initialized point cloud produced by Structure-from-Motion (SfM) techniques. When tackling with large-scale scenes that unavoidably contain texture-less surfaces, the SfM techniques always fail to produce enough points in these surfaces and cannot provide good initialization for 3DGS. As a result, 3DGS suffers from difficult optimization and low-quality renderings. In this paper, inspired by classical multi-view stereo (MVS) techniques, we propose GaussianPro, a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians. Compared to the simple split and clone strategies used in 3DGS, our method leverages the priors of the existing reconstructed geometries of the scene and patch matching techniques to produce new Gaussians with accurate positions and orientations. Experiments on both large-scale and small-scale scenes validate the effectiveness of our method, where our method significantly surpasses 3DGS on the Waymo dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
Abstract:Monocular depth estimation from RGB images plays a pivotal role in 3D vision. However, its accuracy can deteriorate in challenging environments such as nighttime or adverse weather conditions. While long-wave infrared cameras offer stable imaging in such challenging conditions, they are inherently low-resolution, lacking rich texture and semantics as delivered by the RGB image. Current methods focus solely on a single modality due to the difficulties to identify and integrate faithful depth cues from both sources. To address these issues, this paper presents a novel approach that identifies and integrates dominant cross-modality depth features with a learning-based framework. Concretely, we independently compute the coarse depth maps with separate networks by fully utilizing the individual depth cues from each modality. As the advantageous depth spreads across both modalities, we propose a novel confidence loss steering a confidence predictor network to yield a confidence map specifying latent potential depth areas. With the resulting confidence map, we propose a multi-modal fusion network that fuses the final depth in an end-to-end manner. Harnessing the proposed pipeline, our method demonstrates the ability of robust depth estimation in a variety of difficult scenarios. Experimental results on the challenging MS$^2$ and ViViD++ datasets demonstrate the effectiveness and robustness of our method.