Abstract:Large language models (LLMs) provide powerful foundations to perform fine-grained text re-ranking. However, they are often prohibitive in reality due to constraints on computation bandwidth. In this work, we propose a \textbf{flexible} architecture called \textbf{Matroyshka Re-Ranker}, which is designed to facilitate \textbf{runtime customization} of model layers and sequence lengths at each layer based on users' configurations. Consequently, the LLM-based re-rankers can be made applicable across various real-world situations. The increased flexibility may come at the cost of precision loss. To address this problem, we introduce a suite of techniques to optimize the performance. First, we propose \textbf{cascaded self-distillation}, where each sub-architecture learns to preserve a precise re-ranking performance from its super components, whose predictions can be exploited as smooth and informative teacher signals. Second, we design a \textbf{factorized compensation mechanism}, where two collaborative Low-Rank Adaptation modules, vertical and horizontal, are jointly employed to compensate for the precision loss resulted from arbitrary combinations of layer and sequence compression. We perform comprehensive experiments based on the passage and document retrieval datasets from MSMARCO, along with all public datasets from BEIR benchmark. In our experiments, Matryoshka Re-Ranker substantially outperforms the existing methods, while effectively preserving its superior performance across various forms of compression and different application scenarios.
Abstract:The softmax function is a cornerstone of multi-class classification, integral to a wide range of machine learning applications, from large-scale retrieval and ranking models to advanced large language models. However, its computational cost grows linearly with the number of classes, which becomes prohibitively expensive in scenarios with millions or even billions of classes. The sampled softmax, which relies on self-normalized importance sampling, has emerged as a powerful alternative, significantly reducing computational complexity. Yet, its estimator remains unbiased only when the sampling distribution matches the true softmax distribution. To improve both approximation accuracy and sampling efficiency, we propose the MIDX Sampler, a novel adaptive sampling strategy based on an inverted multi-index approach. Concretely, we decompose the softmax probability into several multinomial probabilities, each associated with a specific set of codewords and the last associated with the residual score of queries, thus reducing time complexity to the number of codewords instead of the number of classes. To further boost efficiency, we replace the query-specific residual probability with a simple uniform distribution, simplifying the computation while retaining high performance. Our method is backed by rigorous theoretical analysis, addressing key concerns such as sampling bias, gradient bias, convergence rates, and generalization error bounds. The results demonstrate that a smaller divergence from the ideal softmax distribution leads to faster convergence and improved generalization. Extensive experiments on large-scale language models, sequential recommenders, and extreme multi-class classification tasks confirm that the MIDX-Sampler delivers superior effectiveness and efficiency compared to existing approaches.
Abstract:Despite the rapidly growing demand for multimodal retrieval, progress in this field remains severely constrained by a lack of training data. In this paper, we introduce MegaPairs, a novel data synthesis method that leverages vision language models (VLMs) and open-domain images, together with a massive synthetic dataset generated from this method. Our empirical analysis shows that MegaPairs generates high-quality data, enabling the multimodal retriever to significantly outperform the baseline model trained on 70$\times$ more data from existing datasets. Moreover, since MegaPairs solely relies on general image corpora and open-source VLMs, it can be easily scaled up, enabling continuous improvements in retrieval performance. In this stage, we produced more than 26 million training instances and trained several models of varying sizes using this data. These new models achieve state-of-the-art zero-shot performance across 4 popular composed image retrieval (CIR) benchmarks and the highest overall performance on the 36 datasets provided by MMEB. They also demonstrate notable performance improvements with additional downstream fine-tuning. Our produced dataset, well-trained models, and data synthesis pipeline will be made publicly available to facilitate the future development of this field.
Abstract:Processing long contexts poses a significant challenge for large language models (LLMs) due to their inherent context-window limitations and the computational burden of extensive key-value (KV) activations, which severely impact efficiency. For information-seeking tasks, full context perception is often unnecessary, as a query's information needs can dynamically range from localized details to a global perspective, depending on its complexity. However, existing methods struggle to adapt effectively to these dynamic information needs. In the paper, we propose a method for processing long-context information-seeking tasks via query-guided Activation Refilling (ACRE). ACRE constructs a Bi-layer KV Cache for long contexts, where the layer-1 (L1) cache compactly captures global information, and the layer-2 (L2) cache provides detailed and localized information. ACRE establishes a proxying relationship between the two caches, allowing the input query to attend to the L1 cache and dynamically refill it with relevant entries from the L2 cache. This mechanism integrates global understanding with query-specific local details, thus improving answer decoding. Experiments on a variety of long-context information-seeking datasets demonstrate ACRE's effectiveness, achieving improvements in both performance and efficiency.
Abstract:Evaluation plays a crucial role in the advancement of information retrieval (IR) models. However, current benchmarks, which are based on predefined domains and human-labeled data, face limitations in addressing evaluation needs for emerging domains both cost-effectively and efficiently. To address this challenge, we propose the Automated Heterogeneous Information Retrieval Benchmark (AIR-Bench). AIR-Bench is distinguished by three key features: 1) Automated. The testing data in AIR-Bench is automatically generated by large language models (LLMs) without human intervention. 2) Heterogeneous. The testing data in AIR-Bench is generated with respect to diverse tasks, domains and languages. 3) Dynamic. The domains and languages covered by AIR-Bench are constantly augmented to provide an increasingly comprehensive evaluation benchmark for community developers. We develop a reliable and robust data generation pipeline to automatically create diverse and high-quality evaluation datasets based on real-world corpora. Our findings demonstrate that the generated testing data in AIR-Bench aligns well with human-labeled testing data, making AIR-Bench a dependable benchmark for evaluating IR models. The resources in AIR-Bench are publicly available at https://github.com/AIR-Bench/AIR-Bench.
Abstract:Processing long contexts poses a significant challenge for large language models (LLMs) due to their inherent context-window limitations and the computational burden of extensive key-value (KV) activations, which severely impact efficiency. For information-seeking tasks, full context perception is often unnecessary, as a query's information needs can dynamically range from localized details to a global perspective, depending on its complexity. However, existing methods struggle to adapt effectively to these dynamic information needs. In the paper, we propose a method for processing long-context information-seeking tasks via query-guided Activation Refilling (ACRE). ACRE constructs a Bi-layer KV Cache for long contexts, where the layer-1 (L1) cache compactly captures global information, and the layer-2 (L2) cache provides detailed and localized information. ACRE establishes a proxying relationship between the two caches, allowing the input query to attend to the L1 cache and dynamically refill it with relevant entries from the L2 cache. This mechanism integrates global understanding with query-specific local details, thus improving answer decoding. Experiments on a variety of long-context information-seeking datasets demonstrate ACRE's effectiveness, achieving improvements in both performance and efficiency.
Abstract:Sequential Recommendation (SR) plays a critical role in predicting users' sequential preferences. Despite its growing prominence in various industries, the increasing scale of SR models incurs substantial computational costs and unpredictability, challenging developers to manage resources efficiently. Under this predicament, Scaling Laws have achieved significant success by examining the loss as models scale up. However, there remains a disparity between loss and model performance, which is of greater concern in practical applications. Moreover, as data continues to expand, it incorporates repetitive and inefficient data. In response, we introduce the Performance Law for SR models, which aims to theoretically investigate and model the relationship between model performance and data quality. Specifically, we first fit the HR and NDCG metrics to transformer-based SR models. Subsequently, we propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics. Our method enables accurate predictions across various dataset scales and model sizes, demonstrating a strong correlation in large SR models and offering insights into achieving optimal performance for any given model configuration.
Abstract:Recommendation systems are essential for filtering data and retrieving relevant information across various applications. Recent advancements have seen these systems incorporate increasingly large embedding tables, scaling up to tens of terabytes for industrial use. However, the expansion of network parameters in traditional recommendation models has plateaued at tens of millions, limiting further benefits from increased embedding parameters. Inspired by the success of large language models (LLMs), a new approach has emerged that scales network parameters using innovative structures, enabling continued performance improvements. A significant development in this area is Meta's generative recommendation model HSTU, which illustrates the scaling laws of recommendation systems by expanding parameters to thousands of billions. This new paradigm has achieved substantial performance gains in online experiments. In this paper, we aim to enhance the understanding of scaling laws by conducting comprehensive evaluations of large recommendation models. Firstly, we investigate the scaling laws across different backbone architectures of the large recommendation models. Secondly, we conduct comprehensive ablation studies to explore the origins of these scaling laws. We then further assess the performance of HSTU, as the representative of large recommendation models, on complex user behavior modeling tasks to evaluate its applicability. Notably, we also analyze its effectiveness in ranking tasks for the first time. Finally, we offer insights into future directions for large recommendation models. Supplementary materials for our research are available on GitHub at https://github.com/USTC-StarTeam/Large-Recommendation-Models.
Abstract:Click-through Rate (CTR) prediction is crucial for online personalization platforms. Recent advancements have shown that modeling rich user behaviors can significantly improve the performance of CTR prediction. Current long-term user behavior modeling algorithms predominantly follow two cascading stages. The first stage retrieves subsequence related to the target item from the long-term behavior sequence, while the second stage models the relationship between the subsequence and the target item. Despite significant progress, these methods have two critical flaws. First, the retrieval query typically includes only target item information, limiting the ability to capture the user's diverse interests. Second, relational information, such as sequential and interactive information within the subsequence, is frequently overlooked. Therefore, it requires to be further mined to more accurately model user interests. To this end, we propose Multi-granularity Interest Retrieval and Refinement Network (MIRRN). Specifically, we first construct queries based on behaviors observed at different time scales to obtain subsequences, each capturing users' interest at various granularities. We then introduce an noval multi-head Fourier transformer to efficiently learn sequential and interactive information within the subsequences, leading to more accurate modeling of user interests. Finally, we employ multi-head target attention to adaptively assess the impact of these multi-granularity interests on the target item. Extensive experiments have demonstrated that MIRRN significantly outperforms state-of-the-art baselines. Furthermore, an A/B test shows that MIRRN increases the average number of listening songs by 1.32% and the average time of listening songs by 0.55% on a popular music streaming app. The implementation code is publicly available at https://github.com/psycho-demon/MIRRN.
Abstract:Training Data Detection (TDD) is a task aimed at determining whether a specific data instance is used to train a machine learning model. In the computer security literature, TDD is also referred to as Membership Inference Attack (MIA). Given its potential to assess the risks of training data breaches, ensure copyright authentication, and verify model unlearning, TDD has garnered significant attention in recent years, leading to the development of numerous methods. Despite these advancements, there is no comprehensive benchmark to thoroughly evaluate the effectiveness of TDD methods. In this work, we introduce TDDBench, which consists of 13 datasets spanning three data modalities: image, tabular, and text. We benchmark 21 different TDD methods across four detection paradigms and evaluate their performance from five perspectives: average detection performance, best detection performance, memory consumption, and computational efficiency in both time and memory. With TDDBench, researchers can identify bottlenecks and areas for improvement in TDD algorithms, while practitioners can make informed trade-offs between effectiveness and efficiency when selecting TDD algorithms for specific use cases. Our large-scale benchmarking also reveals the generally unsatisfactory performance of TDD algorithms across different datasets. To enhance accessibility and reproducibility, we open-source TDDBench for the research community.