Abstract:Diffusion models have significant impact on wide range of generative tasks, especially on image inpainting and restoration. Although the improvements on aiming for decreasing number of function evaluations (NFE), the iterative results are still computationally expensive. Consistency models are as a new family of generative models, enable single-step sampling of high quality data without the need for adversarial training. In this paper, we introduce the beta noise distribution, which provides flexibility in adjusting noise levels. This is combined with a sinusoidal curriculum that enhances the learning of the trajectory between the noise distribution and the posterior distribution of interest, allowing High Noise Improved Consistency Training (HN-iCT) to be trained in a supervised fashion. Additionally, High Noise Improved Consistency Training with Image Condition (HN-iCT-CN) architecture is introduced, enables to take Low Dose images as a condition for extracting significant features by Weighted Attention Gates (WAG).Our results indicate that unconditional image generation using HN-iCT significantly outperforms basic CT and iCT training techniques with NFE=1 on the CIFAR10 and CelebA datasets. Moreover, our image-conditioned model demonstrates exceptional performance in enhancing low-dose (LD) CT scans.
Abstract:Various imaging modalities are used in patient diagnosis, each offering unique advantages and valuable insights into anatomy and pathology. Computed Tomography (CT) is crucial in diagnostics, providing high-resolution images for precise internal organ visualization. CT's ability to detect subtle tissue variations is vital for diagnosing diseases like lung cancer, enabling early detection and accurate tumor assessment. However, variations in CT scanner models and acquisition protocols introduce significant variability in the extracted radiomic features, even when imaging the same patient. This variability poses considerable challenges for downstream research and clinical analysis, which depend on consistent and reliable feature extraction. Current methods for medical image feature extraction, often based on supervised learning approaches, including GAN-based models, face limitations in generalizing across different imaging environments. In response to these challenges, we propose LTDiff++, a multiscale latent diffusion model designed to enhance feature extraction in medical imaging. The model addresses variability by standardizing non-uniform distributions in the latent space, improving feature consistency. LTDiff++ utilizes a UNet++ encoder-decoder architecture coupled with a conditional Denoising Diffusion Probabilistic Model (DDPM) at the latent bottleneck to achieve robust feature extraction and standardization. Extensive empirical evaluations on both patient and phantom CT datasets demonstrate significant improvements in image standardization, with higher Concordance Correlation Coefficients (CCC) across multiple radiomic feature categories. Through these advancements, LTDiff++ represents a promising solution for overcoming the inherent variability in medical imaging data, offering improved reliability and accuracy in feature extraction processes.
Abstract:Multi-view classification (MVC) faces inherent challenges due to domain gaps and inconsistencies across different views, often resulting in uncertainties during the fusion process. While Evidential Deep Learning (EDL) has been effective in addressing view uncertainty, existing methods predominantly rely on the Dempster-Shafer combination rule, which is sensitive to conflicting evidence and often neglects the critical role of neighborhood structures within multi-view data. To address these limitations, we propose a Trusted Unified Feature-NEighborhood Dynamics (TUNED) model for robust MVC. This method effectively integrates local and global feature-neighborhood (F-N) structures for robust decision-making. Specifically, we begin by extracting local F-N structures within each view. To further mitigate potential uncertainties and conflicts in multi-view fusion, we employ a selective Markov random field that adaptively manages cross-view neighborhood dependencies. Additionally, we employ a shared parameterized evidence extractor that learns global consensus conditioned on local F-N structures, thereby enhancing the global integration of multi-view features. Experiments on benchmark datasets show that our method improves accuracy and robustness over existing approaches, particularly in scenarios with high uncertainty and conflicting views. The code will be made available at https://github.com/JethroJames/TUNED.
Abstract:Natural content and advertisement coexist in industrial recommendation systems but differ in data distribution. Concretely, traffic related to the advertisement is considerably sparser compared to that of natural content, which motivates the development of transferring knowledge from the richer source natural content domain to the sparser advertising domain. The challenges include the inefficiencies arising from the management of extensive source data and the problem of 'catastrophic forgetting' that results from the CTR model's daily updating. To this end, we propose a novel tri-level asynchronous framework, i.e., Efficient Transfer Learning Framework for Cross-Domain Click-Through Rate Prediction (E-CDCTR), to transfer comprehensive knowledge of natural content to advertisement CTR models. This framework consists of three key components: Tiny Pre-training Model ((TPM), which trains a tiny CTR model with several basic features on long-term natural data; Complete Pre-training Model (CPM), which trains a CTR model holding network structure and input features the same as target advertisement on short-term natural data; Advertisement CTR model (A-CTR), which derives its parameter initialization from CPM together with multiple historical embeddings from TPM as extra feature and then fine-tunes on advertisement data. TPM provides richer representations of user and item for both the CPM and A-CTR, effectively alleviating the forgetting problem inherent in the daily updates. CPM further enhances the advertisement model by providing knowledgeable initialization, thereby alleviating the data sparsity challenges typically encountered by advertising CTR models. Such a tri-level cross-domain transfer learning framework offers an efficient solution to address both data sparsity and `catastrophic forgetting', yielding remarkable improvements.
Abstract:Existing Video Temporal Grounding (VTG) models excel in accuracy but often overlook open-world challenges posed by open-vocabulary queries and untrimmed videos. This leads to unreliable predictions for noisy, corrupted, and out-of-distribution data. Adapting VTG models to dynamically estimate uncertainties based on user input can address this issue. To this end, we introduce SRAM, a robust network module that benefits from a two-stage cross-modal alignment task. More importantly, it integrates Deep Evidential Regression (DER) to explicitly and thoroughly quantify uncertainty during training, thus allowing the model to say "I do not know" in scenarios beyond its handling capacity. However, the direct application of traditional DER theory and its regularizer reveals structural flaws, leading to unintended constraints in VTG tasks. In response, we develop a simple yet effective Geom-regularizer that enhances the uncertainty learning framework from the ground up. To the best of our knowledge, this marks the first successful attempt of DER in VTG. Our extensive quantitative and qualitative results affirm the effectiveness, robustness, and interpretability of our modules and the uncertainty learning paradigm in VTG tasks. The code will be made available.
Abstract:Deep learning has been widely applied in recommender systems, which has achieved revolutionary progress recently. However, most existing learning-based methods assume that the user and item distributions remain unchanged between the training phase and the test phase. However, the distribution of user and item features can naturally shift in real-world scenarios, potentially resulting in a substantial decrease in recommendation performance. This phenomenon can be formulated as an Out-Of-Distribution (OOD) recommendation problem. To address this challenge, we propose a novel Dual Test-Time-Training framework for OOD Recommendation, termed DT3OR. In DT3OR, we incorporate a model adaptation mechanism during the test-time phase to carefully update the recommendation model, allowing the model to specially adapt to the shifting user and item features. To be specific, we propose a self-distillation task and a contrastive task to assist the model learning both the user's invariant interest preferences and the variant user/item characteristics during the test-time phase, thus facilitating a smooth adaptation to the shifting features. Furthermore, we provide theoretical analysis to support the rationale behind our dual test-time training framework. To the best of our knowledge, this paper is the first work to address OOD recommendation via a test-time-training strategy. We conduct experiments on three datasets with various backbones. Comprehensive experimental results have demonstrated the effectiveness of DT3OR compared to other state-of-the-art baselines.
Abstract:Remote sensing change detection (CD) is a pivotal technique that pinpoints changes on a global scale based on multi-temporal images. With the recent expansion of deep learning, supervised deep learning-based CD models have shown satisfactory performance. However, CD sample labeling is very time-consuming as it is densely labeled and requires expert knowledge. To alleviate this problem, we introduce ChangeAnywhere, a novel CD sample generation method using the semantic latent diffusion model and single-temporal images. Specifically, ChangeAnywhere leverages the relative ease of acquiring large single-temporal semantic datasets to generate large-scale, diverse, and semantically annotated bi-temporal CD datasets. ChangeAnywhere captures the two essentials of CD samples, i.e., change implies semantically different, and non-change implies reasonable change under the same semantic constraints. We generated ChangeAnywhere-100K, the largest synthesis CD dataset with 100,000 pairs of CD samples based on the proposed method. The ChangeAnywhere-100K significantly improved both zero-shot and few-shot performance on two CD benchmark datasets for various deep learning-based CD models, as demonstrated by transfer experiments. This paper delineates the enormous potential of ChangeAnywhere for CD sample generation and demonstrates the subsequent enhancement of model performance. Therefore, ChangeAnywhere offers a potent tool for remote sensing CD. All codes and pre-trained models will be available at https://github.com/tangkai-RS/ChangeAnywhere.
Abstract:Consistency models possess high capabilities for image generation, advancing sampling steps to a single step through their advanced techniques. Current advancements move one step forward consistency training techniques and eliminates the limitation of distillation training. Even though the proposed curriculum and noise scheduling in improved training techniques yield better results than basic consistency models, it lacks well balanced noise distribution and its consistency between curriculum. In this study, it is investigated the balance between high and low noise levels in noise distribution and offered polynomial noise distribution to maintain the stability. This proposed polynomial noise distribution is also supported with a predefined Karras noises to prevent unique noise levels arises with Karras noise generation algorithm. Furthermore, by elimination of learned noisy steps with a curriculum based on sinusoidal function increase the performance of the model in denoising. To make a fair comparison with the latest released consistency model training techniques, experiments are conducted with same hyper-parameters except curriculum and noise distribution. The models utilized during experiments are determined with low depth to prove the robustness of our proposed technique. The results show that the polynomial noise distribution outperforms the model trained with log-normal noise distribution, yielding a 33.54 FID score after 100,000 training steps with constant discretization steps. Additionally, the implementation of a sinusoidal-based curriculum enhances denoising performance, resulting in a FID score of 30.48.
Abstract:Knowledge of the medical decision process, which can be modeled as medical decision trees (MDTs), is critical to build clinical decision support systems. However, the current MDT construction methods rely heavily on time-consuming and laborious manual annotation. In this work, we propose a novel task, Text2MDT, to explore the automatic extraction of MDTs from medical texts such as medical guidelines and textbooks. We normalize the form of the MDT and create an annotated Text-to-MDT dataset in Chinese with the participation of medical experts. We investigate two different methods for the Text2MDT tasks: (a) an end-to-end framework which only relies on a GPT style large language models (LLM) instruction tuning to generate all the node information and tree structures. (b) The pipeline framework which decomposes the Text2MDT task to three subtasks. Experiments on our Text2MDT dataset demonstrate that: (a) the end-to-end method basd on LLMs (7B parameters or larger) show promising results, and successfully outperform the pipeline methods. (b) The chain-of-thought (COT) prompting method \cite{Wei2022ChainOT} can improve the performance of the fine-tuned LLMs on the Text2MDT test set. (c) the lightweight pipelined method based on encoder-based pretrained models can perform comparably with LLMs with model complexity two magnititudes smaller. Our Text2MDT dataset is open-sourced at \url{https://tianchi.aliyun.com/dataset/95414}, and the source codes are open-sourced at \url{https://github.com/michael-wzhu/text2dt}.
Abstract:Online recommenders have attained growing interest and created great revenue for businesses. Given numerous users and items, incremental update becomes a mainstream paradigm for learning large-scale models in industrial scenarios, where only newly arrived data within a sliding window is fed into the model, meeting the strict requirements of quick response. However, this strategy would be prone to overfitting to newly arrived data. When there exists a significant drift of data distribution, the long-term information would be discarded, which harms the recommendation performance. Conventional methods address this issue through native model-based continual learning methods, without analyzing the data characteristics for online recommenders. To address the aforementioned issue, we propose an incremental update framework for online recommenders with Data-Driven Prior (DDP), which is composed of Feature Prior (FP) and Model Prior (MP). The FP performs the click estimation for each specific value to enhance the stability of the training process. The MP incorporates previous model output into the current update while strictly following the Bayes rules, resulting in a theoretically provable prior for the robust update. In this way, both the FP and MP are well integrated into the unified framework, which is model-agnostic and can accommodate various advanced interaction models. Extensive experiments on two publicly available datasets as well as an industrial dataset demonstrate the superior performance of the proposed framework.