Abstract:Natural content and advertisement coexist in industrial recommendation systems but differ in data distribution. Concretely, traffic related to the advertisement is considerably sparser compared to that of natural content, which motivates the development of transferring knowledge from the richer source natural content domain to the sparser advertising domain. The challenges include the inefficiencies arising from the management of extensive source data and the problem of 'catastrophic forgetting' that results from the CTR model's daily updating. To this end, we propose a novel tri-level asynchronous framework, i.e., Efficient Transfer Learning Framework for Cross-Domain Click-Through Rate Prediction (E-CDCTR), to transfer comprehensive knowledge of natural content to advertisement CTR models. This framework consists of three key components: Tiny Pre-training Model ((TPM), which trains a tiny CTR model with several basic features on long-term natural data; Complete Pre-training Model (CPM), which trains a CTR model holding network structure and input features the same as target advertisement on short-term natural data; Advertisement CTR model (A-CTR), which derives its parameter initialization from CPM together with multiple historical embeddings from TPM as extra feature and then fine-tunes on advertisement data. TPM provides richer representations of user and item for both the CPM and A-CTR, effectively alleviating the forgetting problem inherent in the daily updates. CPM further enhances the advertisement model by providing knowledgeable initialization, thereby alleviating the data sparsity challenges typically encountered by advertising CTR models. Such a tri-level cross-domain transfer learning framework offers an efficient solution to address both data sparsity and `catastrophic forgetting', yielding remarkable improvements.
Abstract:Extracting users' interests from their lifelong behavior sequence is crucial for predicting Click-Through Rate (CTR). Most current methods employ a two-stage process for efficiency: they first select historical behaviors related to the candidate item and then deduce the user's interest from this narrowed-down behavior sub-sequence. This two-stage paradigm, though effective, leads to information loss. Solely using users' lifelong click behaviors doesn't provide a complete picture of their interests, leading to suboptimal performance. In our research, we introduce the Deep Group Interest Network (DGIN), an end-to-end method to model the user's entire behavior history. This includes all post-registration actions, such as clicks, cart additions, purchases, and more, providing a nuanced user understanding. We start by grouping the full range of behaviors using a relevant key (like item_id) to enhance efficiency. This process reduces the behavior length significantly, from O(10^4) to O(10^2). To mitigate the potential loss of information due to grouping, we incorporate two categories of group attributes. Within each group, we calculate statistical information on various heterogeneous behaviors (like behavior counts) and employ self-attention mechanisms to highlight unique behavior characteristics (like behavior type). Based on this reorganized behavior data, the user's interests are derived using the Transformer technique. Additionally, we identify a subset of behaviors that share the same item_id with the candidate item from the lifelong behavior sequence. The insights from this subset reveal the user's decision-making process related to the candidate item, improving prediction accuracy. Our comprehensive evaluation, both on industrial and public datasets, validates DGIN's efficacy and efficiency.
Abstract:Click-Through Rate (CTR) prediction, estimating the probability of a user clicking on an item, is essential in industrial applications, such as online advertising. Many works focus on user behavior modeling to improve CTR prediction performance. However, most of those methods only model users' positive interests from users' click items while ignoring the context information, which is the display items around the clicks, resulting in inferior performance. In this paper, we highlight the importance of context information on user behavior modeling and propose a novel model named Deep Context Interest Network (DCIN), which integrally models the click and its display context to learn users' context-aware interests. DCIN consists of three key modules: 1) Position-aware Context Aggregation Module (PCAM), which performs aggregation of display items with an attention mechanism; 2) Feedback-Context Fusion Module (FCFM), which fuses the representation of clicks and display contexts through non-linear feature interaction; 3) Interest Matching Module (IMM), which activates interests related with the target item. Moreover, we provide our hands-on solution to implement our DCIN model on large-scale industrial systems. The significant improvements in both offline and online evaluations demonstrate the superiority of our proposed DCIN method. Notably, DCIN has been deployed on our online advertising system serving the main traffic, which brings 1.5% CTR and 1.5% RPM lift.