Abstract:The capability of UAVs for efficient autonomous navigation and obstacle avoidance in complex and unknown environments is critical for applications in agricultural irrigation, disaster relief and logistics. In this paper, we propose the DPRL (Distributed Privileged Reinforcement Learning) navigation algorithm, an end-to-end policy designed to address the challenge of high-speed autonomous UAV navigation under partially observable environmental conditions. Our approach combines deep reinforcement learning with privileged learning to overcome the impact of observation data corruption caused by partial observability. We leverage an asymmetric Actor-Critic architecture to provide the agent with privileged information during training, which enhances the model's perceptual capabilities. Additionally, we present a multi-agent exploration strategy across diverse environments to accelerate experience collection, which in turn expedites model convergence. We conducted extensive simulations across various scenarios, benchmarking our DPRL algorithm against the state-of-the-art navigation algorithms. The results consistently demonstrate the superior performance of our algorithm in terms of flight efficiency, robustness and overall success rate.
Abstract:Hate speech on social media is ubiquitous but urgently controlled. Without detecting and mitigating the biases brought by hate speech, different types of ethical problems. While a number of datasets have been proposed to address the problem of hate speech detection, these datasets seldom consider the diversity and variability of bias, making it far from real-world scenarios. To fill this gap, we propose a benchmark, named HateDebias, to analyze the model ability of hate speech detection under continuous, changing environments. Specifically, to meet the diversity of biases, we collect existing hate speech detection datasets with different types of biases. To further meet the variability (i.e., the changing of bias attributes in datasets), we reorganize datasets to follow the continuous learning setting. We evaluate the detection accuracy of models trained on the datasets with a single type of bias with the performance on the HateDebias, where a significant performance drop is observed. To provide a potential direction for debiasing, we further propose a debiasing framework based on continuous learning and bias information regularization, as well as the memory replay strategies to ensure the debiasing ability of the model. Experiment results on the proposed benchmark show that the aforementioned method can improve several baselines with a distinguished margin, highlighting its effectiveness in real-world applications.
Abstract:This paper provides a comprehensive review of the NTIRE 2024 challenge, focusing on efficient single-image super-resolution (ESR) solutions and their outcomes. The task of this challenge is to super-resolve an input image with a magnification factor of x4 based on pairs of low and corresponding high-resolution images. The primary objective is to develop networks that optimize various aspects such as runtime, parameters, and FLOPs, while still maintaining a peak signal-to-noise ratio (PSNR) of approximately 26.90 dB on the DIV2K_LSDIR_valid dataset and 26.99 dB on the DIV2K_LSDIR_test dataset. In addition, this challenge has 4 tracks including the main track (overall performance), sub-track 1 (runtime), sub-track 2 (FLOPs), and sub-track 3 (parameters). In the main track, all three metrics (ie runtime, FLOPs, and parameter count) were considered. The ranking of the main track is calculated based on a weighted sum-up of the scores of all other sub-tracks. In sub-track 1, the practical runtime performance of the submissions was evaluated, and the corresponding score was used to determine the ranking. In sub-track 2, the number of FLOPs was considered. The score calculated based on the corresponding FLOPs was used to determine the ranking. In sub-track 3, the number of parameters was considered. The score calculated based on the corresponding parameters was used to determine the ranking. RLFN is set as the baseline for efficiency measurement. The challenge had 262 registered participants, and 34 teams made valid submissions. They gauge the state-of-the-art in efficient single-image super-resolution. To facilitate the reproducibility of the challenge and enable other researchers to build upon these findings, the code and the pre-trained model of validated solutions are made publicly available at https://github.com/Amazingren/NTIRE2024_ESR/.
Abstract:Food classification is the foundation for developing food vision tasks and plays a key role in the burgeoning field of computational nutrition. Due to the complexity of food requiring fine-grained classification, recent academic research mainly modifies Convolutional Neural Networks (CNNs) and/or Vision Transformers (ViTs) to perform food category classification. However, to learn fine-grained features, the CNN backbone needs additional structural design, whereas ViT, containing the self-attention module, has increased computational complexity. In recent months, a new Sequence State Space (S4) model, through a Selection mechanism and computation with a Scan (S6), colloquially termed Mamba, has demonstrated superior performance and computation efficiency compared to the Transformer architecture. The VMamba model, which incorporates the Mamba mechanism into image tasks (such as classification), currently establishes the state-of-the-art (SOTA) on the ImageNet dataset. In this research, we introduce an academically underestimated food dataset CNFOOD-241, and pioneer the integration of a residual learning framework within the VMamba model to concurrently harness both global and local state features inherent in the original VMamba architectural design. The research results show that VMamba surpasses current SOTA models in fine-grained and food classification. The proposed Res-VMamba further improves the classification accuracy to 79.54\% without pretrained weight. Our findings elucidate that our proposed methodology establishes a new benchmark for SOTA performance in food recognition on the CNFOOD-241 dataset. The code can be obtained on GitHub: https://github.com/ChiShengChen/ResVMamba.
Abstract:State-of-the-art large language models (LLMs) are now claiming remarkable supported context lengths of 256k or even more. In contrast, the average context lengths of mainstream benchmarks are insufficient (5k-21k), and they suffer from potential knowledge leakage and inaccurate metrics, resulting in biased evaluation. This paper introduces LV-Eval, a challenging long-context benchmark with five length levels (16k, 32k, 64k, 128k, and 256k) reaching up to 256k words. LV-Eval features two main tasks, single-hop QA and multi-hop QA, comprising 11 bilingual datasets. The design of LV-Eval has incorporated three key techniques, namely confusing facts insertion, keyword and phrase replacement, and keyword-recall-based metric design. The advantages of LV-Eval include controllable evaluation across different context lengths, challenging test instances with confusing facts, mitigated knowledge leakage, and more objective evaluations. We evaluate 10 LLMs on LV-Eval and conduct ablation studies on the techniques used in LV-Eval construction. The results reveal that: (i) Commercial LLMs generally outperform open-source LLMs when evaluated within length levels shorter than their claimed context length. However, their overall performance is surpassed by open-source LLMs with longer context lengths. (ii) Extremely long-context LLMs, such as Yi-6B-200k, exhibit a relatively gentle degradation of performance, but their absolute performances may not necessarily be higher than those of LLMs with shorter context lengths. (iii) LLMs' performances can significantly degrade in the presence of confusing information, especially in the pressure test of "needle in a haystack". (iv) Issues related to knowledge leakage and inaccurate metrics introduce bias in evaluation, and these concerns are alleviated in LV-Eval. All datasets and evaluation codes are released at: https://github.com/infinigence/LVEval.
Abstract:Recently there has been significant progress in the field of dialogue system thanks to the introduction of training paradigms such as fine-tune and prompt learning. Persona can function as the prior knowledge for maintaining the personality consistency of dialogue systems, which makes it perform well on accuracy. Nonetheless, the conventional reference-based evaluation method falls short in capturing the genuine text comprehension prowess of the model, significantly relying on the quality of data annotation. In contrast, the application of metamorphic testing offers a more profound insight into the model's distinct capabilities without necessitating supplementary annotation labels. This approach furnishes a more comprehensive portrayal of the model's intricacies and exposes intricacies concealed within reference-based validation techniques. Consequently, we introduce a persona-centric metamorphic relation construction for metamorphic testing, aimed at evaluating both the persona consistency and robustness of personalized dialogue models. For that reason, this work evaluates several widely used training paradigms including learning from scratch, pretrain + fine-tune and prompt learning in personalized dialogue retrieval to know if they are more robust or if they have the same flaws as their predecessor. Under three kinds of designed metamorphic relations with consistent outputs, our experimental results reveal that prompt learning shows stronger robustness compared to training from scratch and fine-tune. Although tested retrieval models gain competitively high retrieval accuracy according to the traditional reference-based validation, they are still fragile and demonstrate various unexpected behaviors, thus there is still room for future improvement in personalized dialogue retrieval.
Abstract:Similar Case Matching (SCM) is designed to determine whether two cases are similar. The task has an essential role in the legal system, helping legal professionals to find relevant cases quickly and thus deal with them more efficiently. Existing research has focused on improving the model's performance but not on its interpretability. Therefore, this paper proposes a pipeline framework for interpretable SCM, which consists of four modules: a judicial feature sentence identification module, a case matching module, a feature sentence alignment module, and a conflict disambiguation module. Unlike existing SCM methods, our framework will identify feature sentences in a case that contain essential information, perform similar case matching based on the extracted feature sentence results, and align the feature sentences in the two cases to provide evidence for the similarity of the cases. SCM results may conflict with feature sentence alignment results, and our framework further disambiguates against this inconsistency. The experimental results show the effectiveness of our framework, and our work provides a new benchmark for interpretable SCM.
Abstract:Recently, more and more research has focused on addressing bias in text classification models. However, existing research mainly focuses on the fairness of monolingual text classification models, and research on fairness for multilingual text classification is still very limited. In this paper, we focus on the task of multilingual text classification and propose a debiasing framework for multilingual text classification based on contrastive learning. Our proposed method does not rely on any external language resources and can be extended to any other languages. The model contains four modules: multilingual text representation module, language fusion module, text debiasing module, and text classification module. The multilingual text representation module uses a multilingual pre-trained language model to represent the text, the language fusion module makes the semantic spaces of different languages tend to be consistent through contrastive learning, and the text debiasing module uses contrastive learning to make the model unable to identify sensitive attributes' information. The text classification module completes the basic tasks of multilingual text classification. In addition, the existing research on the fairness of multilingual text classification is relatively simple in the evaluation mode. The evaluation method of fairness is the same as the monolingual equality difference evaluation method, that is, the evaluation is performed on a single language. We propose a multi-dimensional fairness evaluation framework for multilingual text classification, which evaluates the model's monolingual equality difference, multilingual equality difference, multilingual equality performance difference, and destructiveness of the fairness strategy. We hope that our work can provide a more general debiasing method and a more comprehensive evaluation framework for multilingual text fairness tasks.
Abstract:Active tracking of space noncooperative object that merely relies on vision camera is greatly significant for autonomous rendezvous and debris removal. Considering its Partial Observable Markov Decision Process (POMDP) property, this paper proposes a novel tracker based on deep recurrent reinforcement learning, named as RAMAVT which drives the chasing spacecraft to follow arbitrary space noncooperative object with high-frequency and near-optimal velocity control commands. To further improve the active tracking performance, we introduce Multi-Head Attention (MHA) module and Squeeze-and-Excitation (SE) layer into RAMAVT, which remarkably improve the representative ability of neural network with almost no extra computational cost. Extensive experiments and ablation study implemented on SNCOAT benchmark show the effectiveness and robustness of our method compared with other state-of-the-art algorithm. The source codes are available on https://github.com/Dongzhou-1996/RAMAVT.
Abstract:The effective application of contrastive learning technology in natural language processing tasks shows the superiority of contrastive learning in text analysis tasks. How to construct positive and negative samples correctly and reasonably is the core challenge of contrastive learning. Since it is difficult to construct contrastive objects in multi-label multi-classification tasks, there are few contrastive losses for multi-label multi-classification text classification. In this paper, we propose five contrastive losses for multi-label multi-classification tasks. They are Strict Contrastive Loss (SCL), Intra-label Contrastive Loss (ICL), Jaccard Similarity Contrastive Loss (JSCL), and Jaccard Similarity Probability Contrastive Loss (JSPCL) and Stepwise Label Contrastive Loss (SLCL). We explore the effectiveness of contrastive learning for multi-label multi-classification tasks under different strategies, and provide a set of baseline methods for contrastive learning techniques on multi-label classification tasks. We also perform an interpretability analysis of our approach to show how different contrastive learning methods play their roles. The experimental results in this paper demonstrate that our proposed contrastive losses can bring some improvement for multi-label multi-classification tasks. Our work reveal how to "appropriately" change the contrastive way of contrastive learning is the key idea to improve the adaptability of contrastive learning in multi-label multi-classification tasks.