Abstract:Knowledge Tracing (KT) is a fundamental technology in intelligent tutoring systems used to simulate changes in students' knowledge state during learning, track personalized knowledge mastery, and predict performance. However, current KT models face three major challenges: (1) When encountering new questions, models face cold-start problems due to sparse interaction records, making precise modeling difficult; (2) Traditional models only use historical interaction records for student personalization modeling, unable to accurately track individual mastery levels, resulting in unclear personalized modeling; (3) The decision-making process is opaque to educators, making it challenging for them to understand model judgments. To address these challenges, we propose a novel Dual-channel Difficulty-aware Knowledge Tracing (DDKT) framework that utilizes Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) for subjective difficulty assessment, while integrating difficulty bias-aware algorithms and student mastery algorithms for precise difficulty measurement. Our framework introduces three key innovations: (1) Difficulty Balance Perception Sequence (DBPS) - students' subjective perceptions combined with objective difficulty, measuring gaps between LLM-assessed difficulty, mathematical-statistical difficulty, and students' subjective perceived difficulty through attention mechanisms; (2) Difficulty Mastery Ratio (DMR) - precise modeling of student mastery levels through different difficulty zones; (3) Knowledge State Update Mechanism - implementing personalized knowledge acquisition through gated networks and updating student knowledge state. Experimental results on two real datasets show our method consistently outperforms nine baseline models, improving AUC metrics by 2% to 10% while effectively addressing cold-start problems and enhancing model interpretability.
Abstract:Large language models (LLMs) excel in various tasks but remain vulnerable to jailbreak attacks, where adversaries manipulate prompts to generate harmful outputs. Examining jailbreak prompts helps uncover the shortcomings of LLMs. However, current jailbreak methods and the target model's defenses are engaged in an independent and adversarial process, resulting in the need for frequent attack iterations and redesigning attacks for different models. To address these gaps, we propose a Reverse Embedded Defense Attack (REDA) mechanism that disguises the attack intention as the "defense". intention against harmful content. Specifically, REDA starts from the target response, guiding the model to embed harmful content within its defensive measures, thereby relegating harmful content to a secondary role and making the model believe it is performing a defensive task. The attacking model considers that it is guiding the target model to deal with harmful content, while the target model thinks it is performing a defensive task, creating an illusion of cooperation between the two. Additionally, to enhance the model's confidence and guidance in "defensive" intentions, we adopt in-context learning (ICL) with a small number of attack examples and construct a corresponding dataset of attack examples. Extensive evaluations demonstrate that the REDA method enables cross-model attacks without the need to redesign attack strategies for different models, enables successful jailbreak in one iteration, and outperforms existing methods on both open-source and closed-source models.