Abstract:Recent approaches for visually-rich document understanding (VrDU) uses manually annotated semantic groups, where a semantic group encompasses all semantically relevant but not obviously grouped words. As OCR tools are unable to automatically identify such grouping, we argue that current VrDU approaches are unrealistic. We thus introduce a new variant of the VrDU task, real-world visually-rich document understanding (ReVrDU), that does not allow for using manually annotated semantic groups. We also propose a new method, ReLayout, compliant with the ReVrDU scenario, which learns to capture semantic grouping through arranging words and bringing the representations of words that belong to the potential same semantic group closer together. Our experimental results demonstrate the performance of existing methods is deteriorated with the ReVrDU task, while ReLayout shows superiour performance.
Abstract:Neuromorphic computing has emerged as a promising energy-efficient alternative to traditional artificial intelligence, predominantly utilizing spiking neural networks (SNNs) implemented on neuromorphic hardware. Significant advancements have been made in SNN-based convolutional neural networks (CNNs) and Transformer architectures. However, their applications in the medical imaging domain remain underexplored. In this study, we introduce EG-SpikeFormer, an SNN architecture designed for clinical tasks that integrates eye-gaze data to guide the model's focus on diagnostically relevant regions in medical images. This approach effectively addresses shortcut learning issues commonly observed in conventional models, especially in scenarios with limited clinical data and high demands for model reliability, generalizability, and transparency. Our EG-SpikeFormer not only demonstrates superior energy efficiency and performance in medical image classification tasks but also enhances clinical relevance. By incorporating eye-gaze data, the model improves interpretability and generalization, opening new directions for the application of neuromorphic computing in healthcare.
Abstract:This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguistics, and social sciences. Through rigorous testing, o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance in areas ranging from coding challenges to scientific reasoning and from language processing to creative problem-solving. Key findings include: -83.3% success rate in solving complex competitive programming problems, surpassing many human experts. -Superior ability in generating coherent and accurate radiology reports, outperforming other evaluated models. -100% accuracy in high school-level mathematical reasoning tasks, providing detailed step-by-step solutions. -Advanced natural language inference capabilities across general and specialized domains like medicine. -Impressive performance in chip design tasks, outperforming specialized models in areas such as EDA script generation and bug analysis. -Remarkable proficiency in anthropology and geology, demonstrating deep understanding and reasoning in these specialized fields. -Strong capabilities in quantitative investing. O1 has comprehensive financial knowledge and statistical modeling skills. -Effective performance in social media analysis, including sentiment analysis and emotion recognition. The model excelled particularly in tasks requiring intricate reasoning and knowledge integration across various fields. While some limitations were observed, including occasional errors on simpler problems and challenges with certain highly specialized concepts, the overall results indicate significant progress towards artificial general intelligence.
Abstract:Large Language Models (LLMs) have demonstrated significant capabilities, particularly in the domain of question answering (QA). However, their effectiveness in QA is often undermined by the vagueness of user questions. To address this issue, we introduce single-round instance-level prompt optimization, referred to as question rewriter. By enhancing the intelligibility of human questions for black-box LLMs, our question rewriter improves the quality of generated answers. The rewriter is optimized using direct preference optimization based on feedback collected from automatic criteria for evaluating generated answers; therefore, its training does not require costly human annotations. The experiments across multiple black-box LLMs and long-form question answering (LFQA) datasets demonstrate the efficacy of our method. This paper provides a practical framework for training question rewriters and sets a precedent for future explorations in prompt optimization within LFQA tasks. Code is available at \url{https://github.com/3244we/Question-Rewriter}.
Abstract:Large language models (LLMs) have recently showcased remarkable capabilities, spanning a wide range of tasks and applications, including those in the medical domain. Models like GPT-4 excel in medical question answering but may face challenges in the lack of interpretability when handling complex tasks in real clinical settings. We thus introduce the diagnostic reasoning dataset for clinical notes (DiReCT), aiming at evaluating the reasoning ability and interpretability of LLMs compared to human doctors. It contains 511 clinical notes, each meticulously annotated by physicians, detailing the diagnostic reasoning process from observations in a clinical note to the final diagnosis. Additionally, a diagnostic knowledge graph is provided to offer essential knowledge for reasoning, which may not be covered in the training data of existing LLMs. Evaluations of leading LLMs on DiReCT bring out a significant gap between their reasoning ability and that of human doctors, highlighting the critical need for models that can reason effectively in real-world clinical scenarios.
Abstract:Large Language Models (LLMs) exhibit various emergent abilities. Among these abilities, some might reveal the internal working mechanisms of models. In this paper, we uncover a novel emergent capability in models: the intrinsic ability to perform extended sequences of calculations without relying on chain-of-thought step-by-step solutions. Remarkably, the most advanced models can directly output the results of two-digit number additions with lengths extending up to 15 addends. We hypothesize that the model emerges Implicit Discrete State Representations (IDSRs) within its hidden states and performs symbolic calculations internally. To test this hypothesis, we design a sequence of experiments that look into the hidden states. Specifically, we first confirm that IDSRs exist. Then, we provide interesting observations about the formation of IDSRs from layer, digit, and sequence perspectives. Finally, we confirm that models indeed use IDSRs to produce the final answers. However, we also discover that these state representations are far from lossless in current open-sourced models, leading to inaccuracies in their final performance. Our work presents a novel exploration of LLMs' symbolic calculation abilities and the underlying mechanisms.
Abstract:This paper reviews the NTIRE 2024 Challenge on Shortform UGC Video Quality Assessment (S-UGC VQA), where various excellent solutions are submitted and evaluated on the collected dataset KVQ from popular short-form video platform, i.e., Kuaishou/Kwai Platform. The KVQ database is divided into three parts, including 2926 videos for training, 420 videos for validation, and 854 videos for testing. The purpose is to build new benchmarks and advance the development of S-UGC VQA. The competition had 200 participants and 13 teams submitted valid solutions for the final testing phase. The proposed solutions achieved state-of-the-art performances for S-UGC VQA. The project can be found at https://github.com/lixinustc/KVQChallenge-CVPR-NTIRE2024.
Abstract:In this paper, we pursue a novel 3D AIGC setting: generating 3D content from IDEAs. The definition of an IDEA is the composition of multimodal inputs including text, image, and 3D models. To our knowledge, this challenging and appealing 3D AIGC setting has not been studied before. We propose the novel framework called Idea-2-3D to achieve this goal, which consists of three agents based upon large multimodel models (LMMs) and several existing algorithmic tools for them to invoke. Specifically, these three LMM-based agents are prompted to do the jobs of prompt generation, model selection and feedback reflection. They work in a cycle that involves both mutual collaboration and criticism. Note that this cycle is done in a fully automatic manner, without any human intervention. The framework then outputs a text prompt to generate 3D models that well align with input IDEAs. We show impressive 3D AIGC results that are beyond any previous methods can achieve. For quantitative comparisons, we construct caption-based baselines using a whole bunch of state-of-the-art 3D AIGC models and demonstrate Idea-2-3D out-performs significantly. In 94.2% of cases, Idea-2-3D meets users' requirements, marking a degree of match between IDEA and 3D models that is 2.3 times higher than baselines. Moreover, in 93.5% of the cases, users agreed that Idea-2-3D was better than baselines. Codes, data and models will made publicly available.
Abstract:Multimodal Visual Object Tracking (VOT) has recently gained significant attention due to its robustness. Early research focused on fully fine-tuning RGB-based trackers, which was inefficient and lacked generalized representation due to the scarcity of multimodal data. Therefore, recent studies have utilized prompt tuning to transfer pre-trained RGB-based trackers to multimodal data. However, the modality gap limits pre-trained knowledge recall, and the dominance of the RGB modality persists, preventing the full utilization of information from other modalities. To address these issues, we propose a novel symmetric multimodal tracking framework called SDSTrack. We introduce lightweight adaptation for efficient fine-tuning, which directly transfers the feature extraction ability from RGB to other domains with a small number of trainable parameters and integrates multimodal features in a balanced, symmetric manner. Furthermore, we design a complementary masked patch distillation strategy to enhance the robustness of trackers in complex environments, such as extreme weather, poor imaging, and sensor failure. Extensive experiments demonstrate that SDSTrack outperforms state-of-the-art methods in various multimodal tracking scenarios, including RGB+Depth, RGB+Thermal, and RGB+Event tracking, and exhibits impressive results in extreme conditions. Our source code is available at https://github.com/hoqolo/SDSTrack.
Abstract:3D human body reconstruction has been a challenge in the field of computer vision. Previous methods are often time-consuming and difficult to capture the detailed appearance of the human body. In this paper, we propose a new method called \emph{Ultraman} for fast reconstruction of textured 3D human models from a single image. Compared to existing techniques, \emph{Ultraman} greatly improves the reconstruction speed and accuracy while preserving high-quality texture details. We present a set of new frameworks for human reconstruction consisting of three parts, geometric reconstruction, texture generation and texture mapping. Firstly, a mesh reconstruction framework is used, which accurately extracts 3D human shapes from a single image. At the same time, we propose a method to generate a multi-view consistent image of the human body based on a single image. This is finally combined with a novel texture mapping method to optimize texture details and ensure color consistency during reconstruction. Through extensive experiments and evaluations, we demonstrate the superior performance of \emph{Ultraman} on various standard datasets. In addition, \emph{Ultraman} outperforms state-of-the-art methods in terms of human rendering quality and speed. Upon acceptance of the article, we will make the code and data publicly available.