Abstract:The scaling law has been validated in various domains, such as natural language processing (NLP) and massive computer vision tasks; however, its application to motion generation remains largely unexplored. In this paper, we introduce a scalable motion generation framework that includes the motion tokenizer Motion FSQ-VAE and a text-prefix autoregressive transformer. Through comprehensive experiments, we observe the scaling behavior of this system. For the first time, we confirm the existence of scaling laws within the context of motion generation. Specifically, our results demonstrate that the normalized test loss of our prefix autoregressive models adheres to a logarithmic law in relation to compute budgets. Furthermore, we also confirm the power law between Non-Vocabulary Parameters, Vocabulary Parameters, and Data Tokens with respect to compute budgets respectively. Leveraging the scaling law, we predict the optimal transformer size, vocabulary size, and data requirements for a compute budget of $1e18$. The test loss of the system, when trained with the optimal model size, vocabulary size, and required data, aligns precisely with the predicted test loss, thereby validating the scaling law.
Abstract:Seamless integration of both aerial and street view images remains a significant challenge in neural scene reconstruction and rendering. Existing methods predominantly focus on single domain, limiting their applications in immersive environments, which demand extensive free view exploration with large view changes both horizontally and vertically. We introduce Horizon-GS, a novel approach built upon Gaussian Splatting techniques, tackles the unified reconstruction and rendering for aerial and street views. Our method addresses the key challenges of combining these perspectives with a new training strategy, overcoming viewpoint discrepancies to generate high-fidelity scenes. We also curate a high-quality aerial-to-ground views dataset encompassing both synthetic and real-world scene to advance further research. Experiments across diverse urban scene datasets confirm the effectiveness of our method.
Abstract:Recent advances in generative models have enabled high-quality 3D character reconstruction from multi-modal. However, animating these generated characters remains a challenging task, especially for complex elements like garments and hair, due to the lack of large-scale datasets and effective rigging methods. To address this gap, we curate AnimeRig, a large-scale dataset with detailed skeleton and skinning annotations. Building upon this, we propose DRiVE, a novel framework for generating and rigging 3D human characters with intricate structures. Unlike existing methods, DRiVE utilizes a 3D Gaussian representation, facilitating efficient animation and high-quality rendering. We further introduce GSDiff, a 3D Gaussian-based diffusion module that predicts joint positions as spatial distributions, overcoming the limitations of regression-based approaches. Extensive experiments demonstrate that DRiVE achieves precise rigging results, enabling realistic dynamics for clothing and hair, and surpassing previous methods in both quality and versatility. The code and dataset will be made public for academic use upon acceptance.
Abstract:This paper addresses the task of 3D clothed human generation from textural descriptions. Previous works usually encode the human body and clothes as a holistic model and generate the whole model in a single-stage optimization, which makes them struggle for clothing editing and meanwhile lose fine-grained control over the whole generation process. To solve this, we propose a layer-wise clothed human representation combined with a progressive optimization strategy, which produces clothing-disentangled 3D human models while providing control capacity for the generation process. The basic idea is progressively generating a minimal-clothed human body and layer-wise clothes. During clothing generation, a novel stratified compositional rendering method is proposed to fuse multi-layer human models, and a new loss function is utilized to help decouple the clothing model from the human body. The proposed method achieves high-quality disentanglement, which thereby provides an effective way for 3D garment generation. Extensive experiments demonstrate that our approach achieves state-of-the-art 3D clothed human generation while also supporting cloth editing applications such as virtual try-on. Project page: http://jtdong.com/tela_layer/
Abstract:Generating multiview images from a single view facilitates the rapid generation of a 3D mesh conditioned on a single image. Recent methods that introduce 3D global representation into diffusion models have shown the potential to generate consistent multiviews, but they have reduced generation speed and face challenges in maintaining generalizability and quality. To address this issue, we propose EpiDiff, a localized interactive multiview diffusion model. At the core of the proposed approach is to insert a lightweight epipolar attention block into the frozen diffusion model, leveraging epipolar constraints to enable cross-view interaction among feature maps of neighboring views. The newly initialized 3D modeling module preserves the original feature distribution of the diffusion model, exhibiting compatibility with a variety of base diffusion models. Experiments show that EpiDiff generates 16 multiview images in just 12 seconds, and it surpasses previous methods in quality evaluation metrics, including PSNR, SSIM and LPIPS. Additionally, EpiDiff can generate a more diverse distribution of views, improving the reconstruction quality from generated multiviews. Please see our project page at https://huanngzh.github.io/EpiDiff/.
Abstract:3D representation disentanglement aims to identify, decompose, and manipulate the underlying explanatory factors of 3D data, which helps AI fundamentally understand our 3D world. This task is currently under-explored and poses great challenges: (i) the 3D representations are complex and in general contains much more information than 2D image; (ii) many 3D representations are not well suited for gradient-based optimization, let alone disentanglement. To address these challenges, we use NeRF as a differentiable 3D representation, and introduce a self-supervised Navigation to identify interpretable semantic directions in the latent space. To our best knowledge, this novel method, dubbed NaviNeRF, is the first work to achieve fine-grained 3D disentanglement without any priors or supervisions. Specifically, NaviNeRF is built upon the generative NeRF pipeline, and equipped with an Outer Navigation Branch and an Inner Refinement Branch. They are complementary -- the outer navigation is to identify global-view semantic directions, and the inner refinement dedicates to fine-grained attributes. A synergistic loss is further devised to coordinate two branches. Extensive experiments demonstrate that NaviNeRF has a superior fine-grained 3D disentanglement ability than the previous 3D-aware models. Its performance is also comparable to editing-oriented models relying on semantic or geometry priors.
Abstract:This paper addresses the challenge of reconstructing an animatable human model from a multi-view video. Some recent works have proposed to decompose a dynamic scene into a canonical neural radiance field and a set of deformation fields that map observation-space points to the canonical space, thereby enabling them to learn the dynamic scene from images. However, they represent the deformation field as translational vector field or SE(3) field, which makes the optimization highly under-constrained. Moreover, these representations cannot be explicitly controlled by input motions. Instead, we introduce neural blend weight fields to produce the deformation fields. Based on the skeleton-driven deformation, blend weight fields are used with 3D human skeletons to generate observation-to-canonical and canonical-to-observation correspondences. Since 3D human skeletons are more observable, they can regularize the learning of deformation fields. Moreover, the learned blend weight fields can be combined with input skeletal motions to generate new deformation fields to animate the human model. Experiments show that our approach significantly outperforms recent human synthesis methods. The code will be available at https://zju3dv.github.io/animatable_nerf/.
Abstract:In this paper, we introduce the new task of reconstructing 3D human pose from a single image in which we can see the person and the person's image through a mirror. Compared to general scenarios of 3D pose estimation from a single view, the mirror reflection provides an additional view for resolving the depth ambiguity. We develop an optimization-based approach that exploits mirror symmetry constraints for accurate 3D pose reconstruction. We also provide a method to estimate the surface normal of the mirror from vanishing points in the single image. To validate the proposed approach, we collect a large-scale dataset named Mirrored-Human, which covers a large variety of human subjects, poses and backgrounds. The experiments demonstrate that, when trained on Mirrored-Human with our reconstructed 3D poses as pseudo ground-truth, the accuracy and generalizability of existing single-view 3D pose estimators can be largely improved.
Abstract:Recent advances in image-based human pose estimation make it possible to capture 3D human motion from a single RGB video. However, the inherent depth ambiguity and self-occlusion in a single view prohibit the recovery of as high-quality motion as multi-view reconstruction. While multi-view videos are not common, the videos of a celebrity performing a specific action are usually abundant on the Internet. Even if these videos were recorded at different time instances, they would encode the same motion characteristics of the person. Therefore, we propose to capture human motion by jointly analyzing these Internet videos instead of using single videos separately. However, this new task poses many new challenges that cannot be addressed by existing methods, as the videos are unsynchronized, the camera viewpoints are unknown, the background scenes are different, and the human motions are not exactly the same among videos. To address these challenges, we propose a novel optimization-based framework and experimentally demonstrate its ability to recover much more precise and detailed motion from multiple videos, compared against monocular motion capture methods.
Abstract:This paper addresses the problem of 3D pose estimation for multiple people in a few calibrated camera views. The main challenge of this problem is to find the cross-view correspondences among noisy and incomplete 2D pose predictions. Most previous methods address this challenge by directly reasoning in 3D using a pictorial structure model, which is inefficient due to the huge state space. We propose a fast and robust approach to solve this problem. Our key idea is to use a multi-way matching algorithm to cluster the detected 2D poses in all views. Each resulting cluster encodes 2D poses of the same person across different views and consistent correspondences across the keypoints, from which the 3D pose of each person can be effectively inferred. The proposed convex optimization based multi-way matching algorithm is efficient and robust against missing and false detections, without knowing the number of people in the scene. Moreover, we propose to combine geometric and appearance cues for cross-view matching. The proposed approach achieves significant performance gains from the state-of-the-art (96.3% vs. 90.6% and 96.9% vs. 88% on the Campus and Shelf datasets, respectively), while being efficient for real-time applications.