The University of Sydney, Australia
Abstract:Slot Attention, an approach that binds different objects in a scene to a set of "slots", has become a leading method in unsupervised object-centric learning. Most methods assume a fixed slot count K, and to better accommodate the dynamic nature of object cardinality, a few works have explored K-adaptive variants. However, existing K-adaptive methods still suffer from two limitations. First, they do not explicitly constrain slot-binding quality, so low-quality slots lead to ambiguous feature attribution. Second, adding a slot-count penalty to the reconstruction objective creates conflicting optimization goals between reducing the number of active slots and maintaining reconstruction fidelity. As a result, they still lag significantly behind strong K-fixed baselines. To address these challenges, we propose Quality-Guided K-Adaptive Slot Attention (QASA). First, we decouple slot selection from reconstruction, eliminating the mutual constraints between the two objectives. Then, we propose an unsupervised Slot-Quality metric to assess per-slot quality, providing a principled signal for fine-grained slot--object binding. Based on this metric, we design a Quality-Guided Slot Selection scheme that dynamically selects a subset of high-quality slots and feeds them into our newly designed gated decoder for reconstruction during training. At inference, token-wise competition on slot attention yields a K-adaptive outcome. Experiments show that QASA substantially outperforms existing K-adaptive methods on both real and synthetic datasets. Moreover, on real-world datasets QASA surpasses K-fixed methods.
Abstract:Existing image emotion editing methods struggle to disentangle emotional cues from latent content representations, often yielding weak emotional expression and distorted visual structures. To bridge this gap, we propose EmoKGEdit, a novel training-free framework for precise and structure-preserving image emotion editing. Specifically, we construct a Multimodal Sentiment Association Knowledge Graph (MSA-KG) to disentangle the intricate relationships among objects, scenes, attributes, visual clues and emotion. MSA-KG explicitly encode the causal chain among object-attribute-emotion, and as external knowledge to support chain of thought reasoning, guiding the multimodal large model to infer plausible emotion-related visual cues and generate coherent instructions. In addition, based on MSA-KG, we design a disentangled structure-emotion editing module that explicitly separates emotional attributes from layout features within the latent space, which ensures that the target emotion is effectively injected while strictly maintaining visual spatial coherence. Extensive experiments demonstrate that EmoKGEdit achieves excellent performance in both emotion fidelity and content preservation, and outperforms the state-of-the-art methods.
Abstract:We propose EmoLat, a novel emotion latent space that enables fine-grained, text-driven image sentiment transfer by modeling cross-modal correlations between textual semantics and visual emotion features. Within EmoLat, an emotion semantic graph is constructed to capture the relational structure among emotions, objects, and visual attributes. To enhance the discriminability and transferability of emotion representations, we employ adversarial regularization, aligning the latent emotion distributions across modalities. Building upon EmoLat, a cross-modal sentiment transfer framework is proposed to manipulate image sentiment via joint embedding of text and EmoLat features. The network is optimized using a multi-objective loss incorporating semantic consistency, emotion alignment, and adversarial regularization. To support effective modeling, we construct EmoSpace Set, a large-scale benchmark dataset comprising images with dense annotations on emotions, object semantics, and visual attributes. Extensive experiments on EmoSpace Set demonstrate that our approach significantly outperforms existing state-of-the-art methods in both quantitative metrics and qualitative transfer fidelity, establishing a new paradigm for controllable image sentiment editing guided by textual input. The EmoSpace Set and all the code are available at http://github.com/JingVIPLab/EmoLat.
Abstract:Reinforcement Learning (RL) has become essential for eliciting complex reasoning capabilities in Large Language Models (LLMs). However, the substantial memory overhead of storing Key-Value (KV) caches during long-horizon rollouts acts as a critical bottleneck, often prohibiting efficient training on limited hardware. While existing KV compression techniques offer a remedy for inference, directly applying them to RL training induces a severe policy mismatch, leading to catastrophic performance collapse. To address this, we introduce Sparse-RL empowers stable RL training under sparse rollouts. We show that instability arises from a fundamental policy mismatch among the dense old policy, the sparse sampler policy, and the learner policy. To mitigate this issue, Sparse-RL incorporates Sparsity-Aware Rejection Sampling and Importance-based Reweighting to correct the off-policy bias introduced by compression-induced information loss. Experimental results show that Sparse-RL reduces rollout overhead compared to dense baselines while preserving the performance. Furthermore, Sparse-RL inherently implements sparsity-aware training, significantly enhancing model robustness during sparse inference deployment.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:In Text-to-SQL tasks, existing LLM-based methods often include extensive database schemas in prompts, leading to long context lengths and increased prefilling latency. While user queries typically focus on recurrent table sets-offering an opportunity for KV cache sharing across queries-current inference engines, such as SGLang and vLLM, generate redundant prefix cache copies when processing user queries with varying table orders. To address this inefficiency, we propose precomputing table representations as KV caches offline and querying the required ones online. A key aspect of our approach is the computation of table caches while preserving primary foreign key relationships between tables. Additionally, we construct a Table Trie structure to facilitate efficient KV cache lookups during inference. To enhance cache performance, we introduce a cache management system with a query reranking strategy to improve cache hit rates and a computation loading pipeline for parallelizing model inference and cache loading. Experimental results show that our proposed TableCache achieves up to a 3.62x speedup in Time to First Token (TTFT) with negligible performance degradation.
Abstract:Reconstructing complete and animatable 3D human avatars from monocular videos remains challenging, particularly under severe occlusions. While 3D Gaussian Splatting has enabled photorealistic human rendering, existing methods struggle with incomplete observations, often producing corrupted geometry and temporal inconsistencies. We present InpaintHuman, a novel method for generating high-fidelity, complete, and animatable avatars from occluded monocular videos. Our approach introduces two key innovations: (i) a multi-scale UV-parameterized representation with hierarchical coarse-to-fine feature interpolation, enabling robust reconstruction of occluded regions while preserving geometric details; and (ii) an identity-preserving diffusion inpainting module that integrates textual inversion with semantic-conditioned guidance for subject-specific, temporally coherent completion. Unlike SDS-based methods, our approach employs direct pixel-level supervision to ensure identity fidelity. Experiments on synthetic benchmarks (PeopleSnapshot, ZJU-MoCap) and real-world scenarios (OcMotion) demonstrate competitive performance with consistent improvements in reconstruction quality across diverse poses and viewpoints.
Abstract:Learning-based 3D visual geometry models have benefited substantially from large-scale transformers. Among these, StreamVGGT leverages frame-wise causal attention for strong streaming reconstruction, but suffers from unbounded KV cache growth, leading to escalating memory consumption and inference latency as input frames accumulate. We propose XStreamVGGT, a tuning-free approach that systematically compresses the KV cache through joint pruning and quantization, enabling extremely memory-efficient streaming inference. Specifically, redundant KVs originating from multi-view inputs are pruned through efficient token importance identification, enabling a fixed memory budget. Leveraging the unique distribution of KV tensors, we incorporate KV quantization to further reduce memory consumption. Extensive evaluations show that XStreamVGGT achieves mostly negligible performance degradation while substantially reducing memory usage by 4.42$\times$ and accelerating inference by 5.48$\times$, enabling scalable and practical streaming 3D applications. The code is available at https://github.com/ywh187/XStreamVGGT/.
Abstract:Vision-language models (VLMs) achieve remarkable performance but remain vulnerable to adversarial attacks. Entropy, a measure of model uncertainty, is strongly correlated with the reliability of VLM. Prior entropy-based attacks maximize uncertainty at all decoding steps, implicitly assuming that every token contributes equally to generation instability. We show instead that a small fraction (about 20%) of high-entropy tokens, i.e., critical decision points in autoregressive generation, disproportionately governs output trajectories. By concentrating adversarial perturbations on these positions, we achieve semantic degradation comparable to global methods while using substantially smaller budgets. More importantly, across multiple representative VLMs, such selective attacks convert 35-49% of benign outputs into harmful ones, exposing a more critical safety risk. Remarkably, these vulnerable high-entropy forks recur across architecturally diverse VLMs, enabling feasible transferability (17-26% harmful rates on unseen targets). Motivated by these findings, we propose Entropy-bank Guided Adversarial attacks (EGA), which achieves competitive attack success rates (93-95%) alongside high harmful conversion, thereby revealing new weaknesses in current VLM safety mechanisms.




Abstract:Unified hyperspectral image (HSI) restoration aims to recover various degraded HSIs using a single model, offering great practical value. However, existing methods often depend on explicit degradation priors (e.g., degradation labels) as prompts to guide restoration, which are difficult to obtain due to complex and mixed degradations in real-world scenarios. To address this challenge, we propose a Degradation-Aware Metric Prompting (DAMP) framework. Instead of relying on predefined degradation priors, we design spatial-spectral degradation metrics to continuously quantify multi-dimensional degradations, serving as Degradation Prompts (DP). These DP enable the model to capture cross-task similarities in degradation distributions and enhance shared feature learning. Furthermore, we introduce a Spatial-Spectral Adaptive Module (SSAM) that dynamically modulates spatial and spectral feature extraction through learnable parameters. By integrating SSAM as experts within a Mixture-of-Experts architecture, and using DP as the gating router, the framework enables adaptive, efficient, and robust restoration under diverse, mixed, or unseen degradations. Extensive experiments on natural and remote sensing HSI datasets show that DAMP achieves state-of-the-art performance and demonstrates exceptional generalization capability. Code is publicly available at https://github.com/MiliLab/DAMP.