Abstract:Continual test-time domain adaptation (CTTA) aims to adjust pre-trained source models to perform well over time across non-stationary target environments. While previous methods have made considerable efforts to optimize the adaptation process, a crucial question remains: can the model adapt to continually-changing environments with preserved plasticity over a long time? The plasticity refers to the model's capability to adjust predictions in response to non-stationary environments continually. In this work, we explore plasticity, this essential but often overlooked aspect of continual adaptation to facilitate more sustained adaptation in the long run. First, we observe that most CTTA methods experience a steady and consistent decline in plasticity during the long-timescale continual adaptation phase. Moreover, we find that the loss of plasticity is strongly associated with the change in label flip. Based on this correlation, we propose a simple yet effective policy, Adaptive Shrink-Restore (ASR), towards preserving the model's plasticity. In particular, ASR does the weight re-initialization by the adaptive intervals. The adaptive interval is determined based on the change in label flipping. Our method is validated on extensive CTTA benchmarks, achieving excellent performance.
Abstract:To address the time-consuming and computationally intensive issues of traditional ART algorithms for flame combustion diagnosis, inspired by flame simulation technology, we propose a novel representation method for flames. By modeling the luminous process of flames and utilizing 2D projection images for supervision, our experimental validation shows that this model achieves an average structural similarity index of 0.96 between actual images and predicted 2D projections, along with a Peak Signal-to-Noise Ratio of 39.05. Additionally, it saves approximately 34 times the computation time and about 10 times the memory compared to traditional algorithms.
Abstract:Dynamic scene reconstruction from monocular video is critical for real-world applications. This paper tackles the dual challenges of dynamic novel-view synthesis and 3D geometry reconstruction by introducing a hybrid framework: Deformable Gaussian Splatting and Dynamic Neural Surfaces (DGNS), in which both modules can leverage each other for both tasks. During training, depth maps generated by the deformable Gaussian splatting module guide the ray sampling for faster processing and provide depth supervision within the dynamic neural surface module to improve geometry reconstruction. Simultaneously, the dynamic neural surface directs the distribution of Gaussian primitives around the surface, enhancing rendering quality. To further refine depth supervision, we introduce a depth-filtering process on depth maps derived from Gaussian rasterization. Extensive experiments on public datasets demonstrate that DGNS achieves state-of-the-art performance in both novel-view synthesis and 3D reconstruction.
Abstract:Despite recent advances in text-to-3D generation techniques, current methods often suffer from geometric inconsistencies, commonly referred to as the Janus Problem. This paper identifies the root cause of the Janus Problem: viewpoint generation bias in diffusion models, which creates a significant gap between the actual generated viewpoint and the expected one required for optimizing the 3D model. To address this issue, we propose a tuning-free approach called the Attention and CLIP Guidance (ACG) mechanism. ACG enhances desired viewpoints by adaptively controlling cross-attention maps, employs CLIP-based view-text similarities to filter out erroneous viewpoints, and uses a coarse-to-fine optimization strategy with staged prompts to progressively refine 3D generation. Extensive experiments demonstrate that our method significantly reduces the Janus Problem without compromising generation speed, establishing ACG as an efficient, plug-and-play component for existing text-to-3D frameworks.
Abstract:Crop biomass offers crucial insights into plant health and yield, making it essential for crop science, farming systems, and agricultural research. However, current measurement methods, which are labor-intensive, destructive, and imprecise, hinder large-scale quantification of this trait. To address this limitation, we present a biomass prediction network (BioNet), designed for adaptation across different data modalities, including point clouds and drone imagery. Our BioNet, utilizing a sparse 3D convolutional neural network (CNN) and a transformer-based prediction module, processes point clouds and other 3D data representations to predict biomass. To further extend BioNet for drone imagery, we integrate a neural feature field (NeFF) module, enabling 3D structure reconstruction and the transformation of 2D semantic features from vision foundation models into the corresponding 3D surfaces. For the point cloud modality, BioNet demonstrates superior performance on two public datasets, with an approximate 6.1% relative improvement (RI) over the state-of-the-art. In the RGB image modality, the combination of BioNet and NeFF achieves a 7.9% RI. Additionally, the NeFF-based approach utilizes inexpensive, portable drone-mounted cameras, providing a scalable solution for large field applications.
Abstract:In this paper, we propose an algorithm for registering sequential bounding boxes with point cloud streams. Unlike popular point cloud registration techniques, the alignment of the point cloud and the bounding box can rely on the properties of the bounding box, such as size, shape, and temporal information, which provides substantial support and performance gains. Motivated by this, we propose a new approach to tackle this problem. Specifically, we model the registration process through an overall objective function that includes the final goal and all constraints. We then optimize the function using gradient descent. Our experiments show that the proposed method performs remarkably well with a 40\% improvement in IoU and demonstrates more robust registration between point cloud streams and sequential bounding boxes
Abstract:Stripe-like space target detection (SSTD) is crucial for space situational awareness. Traditional unsupervised methods often fail in low signal-to-noise ratio and variable stripe-like space targets scenarios, leading to weak generalization. Although fully supervised learning methods improve model generalization, they require extensive pixel-level labels for training. In the SSTD task, manually creating these labels is often inaccurate and labor-intensive. Semi-supervised learning (SSL) methods reduce the need for these labels and enhance model generalizability, but their performance is limited by pseudo-label quality. To address this, we introduce an innovative Collaborative Static-Dynamic Teacher (CSDT) SSL framework, which includes static and dynamic teacher models as well as a student model. This framework employs a customized adaptive pseudo-labeling (APL) strategy, transitioning from initial static teaching to adaptive collaborative teaching, guiding the student model's training. The exponential moving average (EMA) mechanism further enhances this process by feeding new stripe-like knowledge back to the dynamic teacher model through the student model, creating a positive feedback loop that continuously enhances the quality of pseudo-labels. Moreover, we present MSSA-Net, a novel SSTD network featuring a multi-scale dual-path convolution (MDPC) block and a feature map weighted attention (FMWA) block, designed to extract diverse stripe-like features within the CSDT SSL training framework. Extensive experiments verify the state-of-the-art performance of our framework on the AstroStripeSet and various ground-based and space-based real-world datasets.
Abstract:Acquiring reviewers for academic submissions is a challenging recommendation scenario. Recent graph learning-driven models have made remarkable progress in the field of recommendation, but their performance in the academic reviewer recommendation task may suffer from a significant false negative issue. This arises from the assumption that unobserved edges represent negative samples. In fact, the mechanism of anonymous review results in inadequate exposure of interactions between reviewers and submissions, leading to a higher number of unobserved interactions compared to those caused by reviewers declining to participate. Therefore, investigating how to better comprehend the negative labeling of unobserved interactions in academic reviewer recommendations is a significant challenge. This study aims to tackle the ambiguous nature of unobserved interactions in academic reviewer recommendations. Specifically, we propose an unsupervised Pseudo Neg-Label strategy to enhance graph contrastive learning (GCL) for recommending reviewers for academic submissions, which we call RevGNN. RevGNN utilizes a two-stage encoder structure that encodes both scientific knowledge and behavior using Pseudo Neg-Label to approximate review preference. Extensive experiments on three real-world datasets demonstrate that RevGNN outperforms all baselines across four metrics. Additionally, detailed further analyses confirm the effectiveness of each component in RevGNN.
Abstract:Stripe-like space target detection (SSTD) plays a key role in enhancing space situational awareness and assessing spacecraft behaviour. This domain faces three challenges: the lack of publicly available datasets, interference from stray light and stars, and the variability of stripe-like targets, which complicates pixel-level annotation. In response, we introduces `AstroStripeSet', a pioneering dataset designed for SSTD, aiming to bridge the gap in academic resources and advance research in SSTD. Furthermore, we propose a novel pseudo-label evolution teacher-student framework with single-point supervision. This framework starts with generating initial pseudo-labels using the zero-shot capabilities of the Segment Anything Model (SAM) in a single-point setting, and refines these labels iteratively. In our framework, the fine-tuned StripeSAM serves as the teacher and the newly developed StripeNet as the student, consistently improving segmentation performance by improving the quality of pseudo-labels. We also introduce `GeoDice', a new loss function customized for the linear characteristics of stripe-like targets. Extensive experiments show that the performance of our approach matches fully supervised methods on all evaluation metrics, establishing a new state-of-the-art (SOTA) benchmark. Our dataset and code will be made publicly available.
Abstract:Ultrasound-guided percutaneous needle insertion is a standard procedure employed in both biopsy and ablation in clinical practices. However, due to the complex interaction between tissue and instrument, the needle may deviate from the in-plane view, resulting in a lack of close monitoring of the percutaneous needle. To address this challenge, we introduce a robot-assisted ultrasound (US) imaging system designed to seamlessly monitor the insertion process and autonomously restore the visibility of the inserted instrument when misalignment happens. To this end, the adversarial structure is presented to encourage the generation of segmentation masks that align consistently with the ground truth in high-order space. This study also systematically investigates the effects on segmentation performance by exploring various training loss functions and their combinations. When misalignment between the probe and the percutaneous needle is detected, the robot is triggered to perform transverse searching to optimize the positional and rotational adjustment to restore needle visibility. The experimental results on ex-vivo porcine samples demonstrate that the proposed method can precisely segment the percutaneous needle (with a tip error of $0.37\pm0.29mm$ and an angle error of $1.19\pm 0.29^{\circ}$). Furthermore, the needle appearance can be successfully restored under the repositioned probe pose in all 45 trials, with repositioning errors of $1.51\pm0.95mm$ and $1.25\pm0.79^{\circ}$. from latex to text with math symbols