Abstract:Continual test-time domain adaptation (CTTA) aims to adjust pre-trained source models to perform well over time across non-stationary target environments. While previous methods have made considerable efforts to optimize the adaptation process, a crucial question remains: can the model adapt to continually-changing environments with preserved plasticity over a long time? The plasticity refers to the model's capability to adjust predictions in response to non-stationary environments continually. In this work, we explore plasticity, this essential but often overlooked aspect of continual adaptation to facilitate more sustained adaptation in the long run. First, we observe that most CTTA methods experience a steady and consistent decline in plasticity during the long-timescale continual adaptation phase. Moreover, we find that the loss of plasticity is strongly associated with the change in label flip. Based on this correlation, we propose a simple yet effective policy, Adaptive Shrink-Restore (ASR), towards preserving the model's plasticity. In particular, ASR does the weight re-initialization by the adaptive intervals. The adaptive interval is determined based on the change in label flipping. Our method is validated on extensive CTTA benchmarks, achieving excellent performance.
Abstract:Pre-trained vision-language models provide a robust foundation for efficient transfer learning across various downstream tasks. In the field of video action recognition, mainstream approaches often introduce additional parameter modules to capture temporal information. While the increased model capacity brought by these additional parameters helps better fit the video-specific inductive biases, existing methods require learning a large number of parameters and are prone to catastrophic forgetting of the original generalizable knowledge. In this paper, we propose a simple yet effective Multi-modal Spatio-Temporal Adapter (MSTA) to improve the alignment between representations in the text and vision branches, achieving a balance between general knowledge and task-specific knowledge. Furthermore, to mitigate over-fitting and enhance generalizability, we introduce a spatio-temporal description-guided consistency constraint. This constraint involves feeding template inputs (i.e., ``a video of $\{\textbf{cls}\}$'') into the trainable language branch, while LLM-generated spatio-temporal descriptions are input into the pre-trained language branch, enforcing consistency between the outputs of the two branches. This mechanism prevents over-fitting to downstream tasks and improves the distinguishability of the trainable branch within the spatio-temporal semantic space. We evaluate the effectiveness of our approach across four tasks: zero-shot transfer, few-shot learning, base-to-novel generalization, and fully-supervised learning. Compared to many state-of-the-art methods, our MSTA achieves outstanding performance across all evaluations, while using only 2-7\% of the trainable parameters in the original model. Code will be avaliable at https://github.com/chenhaoxing/ETL4Video.
Abstract:The recent progress in text-to-image models pretrained on large-scale datasets has enabled us to generate various images as long as we provide a text prompt describing what we want. Nevertheless, the availability of these models is still limited when we expect to generate images that fall into a specific domain either hard to describe or just unseen to the models. In this work, we propose DomainGallery, a few-shot domain-driven image generation method which aims at finetuning pretrained Stable Diffusion on few-shot target datasets in an attribute-centric manner. Specifically, DomainGallery features prior attribute erasure, attribute disentanglement, regularization and enhancement. These techniques are tailored to few-shot domain-driven generation in order to solve key issues that previous works have failed to settle. Extensive experiments are given to validate the superior performance of DomainGallery on a variety of domain-driven generation scenarios. Codes are available at https://github.com/Ldhlwh/DomainGallery.
Abstract:Recent Vision Mamba models not only have much lower complexity for processing higher resolution images and longer videos but also the competitive performance with Vision Transformers (ViTs). However, they are stuck into overfitting and thus only present up to base size (about 80M). It is still unclear how vanilla Vision Mamba (Vim) can be efficiently scaled up to larger sizes, which is essentially for further exploitation. In this paper, we propose a stochastic layer-wise shuffle regularization, which empowers successfully scaling non-hierarchical Vision Mamba to a large size (about 300M) in a supervised setting. Specifically, our base and large-scale ShuffleMamba models can outperform the supervised ViTs of similar size by 0.8\% and 1.0\% classification accuracy on ImageNet1k, respectively, without auxiliary data. When evaluated on the ADE20K semantic segmentation and COCO detection tasks, our ShuffleMamba models also show significant improvements. Without bells and whistles, the stochastic layer-wise shuffle has the following highlights: (1) \textit{Plug and play:} it does not change model architectures and will be omitted in inference. (2) \textit{Simple but effective:} it can improve the overfitting in Vim training and only introduce random token permutation operations. (3) \textit{Intuitive:} the token sequences in deeper layers are more likely to be shuffled as they are expected to be more semantic and less sensitive to patch positions. Code and models will be available at https://github.com/huangzizheng01/ShuffleMamba.
Abstract:Conventional multiple-input multiple-out (MIMO) technologies have encountered bottlenecks of significantly increasing spectrum efficiencies of wireless communications due to the low degrees of freedom in practical line-of-sight scenarios and severe path loss of high frequency carriers. Orbital angular momentum (OAM) has shown the potential for high spectrum efficiencies in radio frequency domains. To investigate the advantage of OAM in multiuser communications, in this paper we propose the reconfigurable intelligence surface (RIS) assisted OAM multiuser (MU) wireless communication schemes, where RIS is deployed to establish the direct links blocked by obstacles between the OAM transmitter and users, to significantly increase the achievable sum rate (ASR) of MU systems. To maximize the ASR, we develop the alternative optimization algorithm to jointly optimize the transmit power and phase shifts of RIS. The numerical outcomes demonstrate the superiority of our proposed scheme compared to existing methods in terms of ASR.
Abstract:Recently, video generation techniques have advanced rapidly. Given the popularity of video content on social media platforms, these models intensify concerns about the spread of fake information. Therefore, there is a growing demand for detectors capable of distinguishing between fake AI-generated videos and mitigating the potential harm caused by fake information. However, the lack of large-scale datasets from the most advanced video generators poses a barrier to the development of such detectors. To address this gap, we introduce the first AI-generated video detection dataset, GenVideo. It features the following characteristics: (1) a large volume of videos, including over one million AI-generated and real videos collected; (2) a rich diversity of generated content and methodologies, covering a broad spectrum of video categories and generation techniques. We conducted extensive studies of the dataset and proposed two evaluation methods tailored for real-world-like scenarios to assess the detectors' performance: the cross-generator video classification task assesses the generalizability of trained detectors on generators; the degraded video classification task evaluates the robustness of detectors to handle videos that have degraded in quality during dissemination. Moreover, we introduced a plug-and-play module, named Detail Mamba (DeMamba), designed to enhance the detectors by identifying AI-generated videos through the analysis of inconsistencies in temporal and spatial dimensions. Our extensive experiments demonstrate DeMamba's superior generalizability and robustness on GenVideo compared to existing detectors. We believe that the GenVideo dataset and the DeMamba module will significantly advance the field of AI-generated video detection. Our code and dataset will be aviliable at \url{https://github.com/chenhaoxing/DeMamba}.
Abstract:This study reveals a cutting-edge re-balanced contrastive learning strategy aimed at strengthening face anti-spoofing capabilities within facial recognition systems, with a focus on countering the challenges posed by printed photos, and highly realistic silicone or latex masks. Leveraging the HySpeFAS dataset, which benefits from Snapshot Spectral Imaging technology to provide hyperspectral images, our approach harmonizes class-level contrastive learning with data resampling and an innovative real-face oriented reweighting technique. This method effectively mitigates dataset imbalances and reduces identity-related biases. Notably, our strategy achieved an unprecedented 0.0000\% Average Classification Error Rate (ACER) on the HySpeFAS dataset, ranking first at the Chalearn Snapshot Spectral Imaging Face Anti-spoofing Challenge on CVPR 2024.
Abstract:Pre-trained large-scale vision-language models (VLMs) have acquired profound understanding of general visual concepts. Recent advancements in efficient transfer learning (ETL) have shown remarkable success in fine-tuning VLMs within the scenario of limited data, introducing only a few parameters to harness task-specific insights from VLMs. Despite significant progress, current leading ETL methods tend to overfit the narrow distributions of base classes seen during training and encounter two primary challenges: (i) only utilizing uni-modal information to modeling task-specific knowledge; and (ii) using costly and time-consuming methods to supplement knowledge. To address these issues, we propose a Conditional Prototype Rectification Prompt Learning (CPR) method to correct the bias of base examples and augment limited data in an effective way. Specifically, we alleviate overfitting on base classes from two aspects. First, each input image acquires knowledge from both textual and visual prototypes, and then generates sample-conditional text tokens. Second, we extract utilizable knowledge from unlabeled data to further refine the prototypes. These two strategies mitigate biases stemming from base classes, yielding a more effective classifier. Extensive experiments on 11 benchmark datasets show that our CPR achieves state-of-the-art performance on both few-shot classification and base-to-new generalization tasks. Our code is avaliable at \url{https://github.com/chenhaoxing/CPR}.
Abstract:Image harmonization is a crucial technique in image composition that aims to seamlessly match the background by adjusting the foreground of composite images. Current methods adopt either global-level or pixel-level feature matching. Global-level feature matching ignores the proximity prior, treating foreground and background as separate entities. On the other hand, pixel-level feature matching loses contextual information. Therefore, it is necessary to use the information from semantic maps that describe different objects to guide harmonization. In this paper, we propose Semantic-guided Region-aware Instance Normalization (SRIN) that can utilize the semantic segmentation maps output by a pre-trained Segment Anything Model (SAM) to guide the visual consistency learning of foreground and background features. Abundant experiments demonstrate the superiority of our method for image harmonization over state-of-the-art methods.
Abstract:Audio-visual zero-shot learning aims to recognize unseen categories based on paired audio-visual sequences. Recent methods mainly focus on learning aligned and discriminative multi-modal features to boost generalization towards unseen categories. However, these approaches ignore the obscure action concepts in category names and may inevitably introduce complex network structures with difficult training objectives. In this paper, we propose a simple yet effective framework named Knowledge-aware Distribution Adaptation (KDA) to help the model better grasp the novel action contents with an external knowledge base. Specifically, we first propose using large language models to generate rich descriptions from category names, which leads to a better understanding of unseen categories. Additionally, we propose a distribution alignment loss as well as a knowledge-aware adaptive margin loss to further improve the generalization ability towards unseen categories. Extensive experimental results demonstrate that our proposed KDA can outperform state-of-the-art methods on three popular audio-visual zero-shot learning datasets. Our code will be avaliable at \url{https://github.com/chenhaoxing/KDA}.