Abstract:Pre-trained vision-language models provide a robust foundation for efficient transfer learning across various downstream tasks. In the field of video action recognition, mainstream approaches often introduce additional parameter modules to capture temporal information. While the increased model capacity brought by these additional parameters helps better fit the video-specific inductive biases, existing methods require learning a large number of parameters and are prone to catastrophic forgetting of the original generalizable knowledge. In this paper, we propose a simple yet effective Multi-modal Spatio-Temporal Adapter (MSTA) to improve the alignment between representations in the text and vision branches, achieving a balance between general knowledge and task-specific knowledge. Furthermore, to mitigate over-fitting and enhance generalizability, we introduce a spatio-temporal description-guided consistency constraint. This constraint involves feeding template inputs (i.e., ``a video of $\{\textbf{cls}\}$'') into the trainable language branch, while LLM-generated spatio-temporal descriptions are input into the pre-trained language branch, enforcing consistency between the outputs of the two branches. This mechanism prevents over-fitting to downstream tasks and improves the distinguishability of the trainable branch within the spatio-temporal semantic space. We evaluate the effectiveness of our approach across four tasks: zero-shot transfer, few-shot learning, base-to-novel generalization, and fully-supervised learning. Compared to many state-of-the-art methods, our MSTA achieves outstanding performance across all evaluations, while using only 2-7\% of the trainable parameters in the original model. Code will be avaliable at https://github.com/chenhaoxing/ETL4Video.
Abstract:Recent Vision Mamba models not only have much lower complexity for processing higher resolution images and longer videos but also the competitive performance with Vision Transformers (ViTs). However, they are stuck into overfitting and thus only present up to base size (about 80M). It is still unclear how vanilla Vision Mamba (Vim) can be efficiently scaled up to larger sizes, which is essentially for further exploitation. In this paper, we propose a stochastic layer-wise shuffle regularization, which empowers successfully scaling non-hierarchical Vision Mamba to a large size (about 300M) in a supervised setting. Specifically, our base and large-scale ShuffleMamba models can outperform the supervised ViTs of similar size by 0.8\% and 1.0\% classification accuracy on ImageNet1k, respectively, without auxiliary data. When evaluated on the ADE20K semantic segmentation and COCO detection tasks, our ShuffleMamba models also show significant improvements. Without bells and whistles, the stochastic layer-wise shuffle has the following highlights: (1) \textit{Plug and play:} it does not change model architectures and will be omitted in inference. (2) \textit{Simple but effective:} it can improve the overfitting in Vim training and only introduce random token permutation operations. (3) \textit{Intuitive:} the token sequences in deeper layers are more likely to be shuffled as they are expected to be more semantic and less sensitive to patch positions. Code and models will be available at https://github.com/huangzizheng01/ShuffleMamba.
Abstract:Recently, video generation techniques have advanced rapidly. Given the popularity of video content on social media platforms, these models intensify concerns about the spread of fake information. Therefore, there is a growing demand for detectors capable of distinguishing between fake AI-generated videos and mitigating the potential harm caused by fake information. However, the lack of large-scale datasets from the most advanced video generators poses a barrier to the development of such detectors. To address this gap, we introduce the first AI-generated video detection dataset, GenVideo. It features the following characteristics: (1) a large volume of videos, including over one million AI-generated and real videos collected; (2) a rich diversity of generated content and methodologies, covering a broad spectrum of video categories and generation techniques. We conducted extensive studies of the dataset and proposed two evaluation methods tailored for real-world-like scenarios to assess the detectors' performance: the cross-generator video classification task assesses the generalizability of trained detectors on generators; the degraded video classification task evaluates the robustness of detectors to handle videos that have degraded in quality during dissemination. Moreover, we introduced a plug-and-play module, named Detail Mamba (DeMamba), designed to enhance the detectors by identifying AI-generated videos through the analysis of inconsistencies in temporal and spatial dimensions. Our extensive experiments demonstrate DeMamba's superior generalizability and robustness on GenVideo compared to existing detectors. We believe that the GenVideo dataset and the DeMamba module will significantly advance the field of AI-generated video detection. Our code and dataset will be aviliable at \url{https://github.com/chenhaoxing/DeMamba}.
Abstract:Pre-trained large-scale vision-language models (VLMs) have acquired profound understanding of general visual concepts. Recent advancements in efficient transfer learning (ETL) have shown remarkable success in fine-tuning VLMs within the scenario of limited data, introducing only a few parameters to harness task-specific insights from VLMs. Despite significant progress, current leading ETL methods tend to overfit the narrow distributions of base classes seen during training and encounter two primary challenges: (i) only utilizing uni-modal information to modeling task-specific knowledge; and (ii) using costly and time-consuming methods to supplement knowledge. To address these issues, we propose a Conditional Prototype Rectification Prompt Learning (CPR) method to correct the bias of base examples and augment limited data in an effective way. Specifically, we alleviate overfitting on base classes from two aspects. First, each input image acquires knowledge from both textual and visual prototypes, and then generates sample-conditional text tokens. Second, we extract utilizable knowledge from unlabeled data to further refine the prototypes. These two strategies mitigate biases stemming from base classes, yielding a more effective classifier. Extensive experiments on 11 benchmark datasets show that our CPR achieves state-of-the-art performance on both few-shot classification and base-to-new generalization tasks. Our code is avaliable at \url{https://github.com/chenhaoxing/CPR}.
Abstract:Audio-visual zero-shot learning aims to recognize unseen categories based on paired audio-visual sequences. Recent methods mainly focus on learning aligned and discriminative multi-modal features to boost generalization towards unseen categories. However, these approaches ignore the obscure action concepts in category names and may inevitably introduce complex network structures with difficult training objectives. In this paper, we propose a simple yet effective framework named Knowledge-aware Distribution Adaptation (KDA) to help the model better grasp the novel action contents with an external knowledge base. Specifically, we first propose using large language models to generate rich descriptions from category names, which leads to a better understanding of unseen categories. Additionally, we propose a distribution alignment loss as well as a knowledge-aware adaptive margin loss to further improve the generalization ability towards unseen categories. Extensive experimental results demonstrate that our proposed KDA can outperform state-of-the-art methods on three popular audio-visual zero-shot learning datasets. Our code will be avaliable at \url{https://github.com/chenhaoxing/KDA}.
Abstract:Instance discrimination contrastive learning (CL) has achieved significant success in learning transferable representations. A hardness-aware property related to the temperature $ \tau $ of the CL loss is identified to play an essential role in automatically concentrating on hard negative samples. However, previous work also proves that there exists a uniformity-tolerance dilemma (UTD) in CL loss, which will lead to unexpected performance degradation. Specifically, a smaller temperature helps to learn separable embeddings but has less tolerance to semantically related samples, which may result in suboptimal embedding space, and vice versa. In this paper, we propose a Model-Aware Contrastive Learning (MACL) strategy to escape UTD. For the undertrained phases, there is less possibility that the high similarity region of the anchor contains latent positive samples. Thus, adopting a small temperature in these stages can impose larger penalty strength on hard negative samples to improve the discrimination of the CL model. In contrast, a larger temperature in the well-trained phases helps to explore semantic structures due to more tolerance to potential positive samples. During implementation, the temperature in MACL is designed to be adaptive to the alignment property that reflects the confidence of a CL model. Furthermore, we reexamine why contrastive learning requires a large number of negative samples in a unified gradient reduction perspective. Based on MACL and these analyses, a new CL loss is proposed in this work to improve the learned representations and training with small batch size.