Abstract:Neural radiance field (NeRF) has become a popular 3D representation method for human avatar reconstruction due to its high-quality rendering capabilities, e.g., regarding novel views and poses. However, previous methods for editing the geometry and appearance of the avatar only allow for global editing through body shape parameters and 2D texture maps. In this paper, we propose a new approach named \textbf{U}nified \textbf{V}olumetric \textbf{A}vatar (\textbf{UVA}) that enables local and independent editing of both geometry and texture, while retaining the ability to render novel views and poses. UVA transforms each observation point to a canonical space using a skinning motion field and represents geometry and texture in separate neural fields. Each field is composed of a set of structured latent codes that are attached to anchor nodes on a deformable mesh in canonical space and diffused into the entire space via interpolation, allowing for local editing. To address spatial ambiguity in code interpolation, we use a local signed height indicator. We also replace the view-dependent radiance color with a pose-dependent shading factor to better represent surface illumination in different poses. Experiments on multiple human avatars demonstrate that our UVA achieves competitive results in novel view synthesis and novel pose rendering while enabling local and independent editing of geometry and appearance. The source code will be released.
Abstract:Neural radiance field using pixel-aligned features can render photo-realistic novel views. However, when pixel-aligned features are directly introduced to human avatar reconstruction, the rendering can only be conducted for still humans, rather than animatable avatars. In this paper, we propose AniPixel, a novel animatable and generalizable human avatar reconstruction method that leverages pixel-aligned features for body geometry prediction and RGB color blending. Technically, to align the canonical space with the target space and the observation space, we propose a bidirectional neural skinning field based on skeleton-driven deformation to establish the target-to-canonical and canonical-to-observation correspondences. Then, we disentangle the canonical body geometry into a normalized neutral-sized body and a subject-specific residual for better generalizability. As the geometry and appearance are closely related, we introduce pixel-aligned features to facilitate the body geometry prediction and detailed surface normals to reinforce the RGB color blending. Moreover, we devise a pose-dependent and view direction-related shading module to represent the local illumination variance. Experiments show that our AniPixel renders comparable novel views while delivering better novel pose animation results than state-of-the-art methods. The code will be released.
Abstract:Deep learning has demonstrated its power in image rectification by leveraging the representation capacity of deep neural networks via supervised training based on a large-scale synthetic dataset. However, the model may overfit the synthetic images and generalize not well on real-world fisheye images due to the limited universality of a specific distortion model and the lack of explicitly modeling the distortion and rectification process. In this paper, we propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same. Specifically, we devise a new network architecture with a shared encoder and several prediction heads, each of which predicts the distortion parameter of a specific distortion model. We further leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters and exploit the intra- and inter-model consistency between them during training, thereby leading to a self-supervised learning scheme without the need for ground-truth distortion parameters or normal images. Experiments on synthetic dataset and real-world fisheye images demonstrate that our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods. Self-supervised learning also improves the universality of distortion models while keeping their self-consistency.