Deep learning has demonstrated its power in image rectification by leveraging the representation capacity of deep neural networks via supervised training based on a large-scale synthetic dataset. However, the model may overfit the synthetic images and generalize not well on real-world fisheye images due to the limited universality of a specific distortion model and the lack of explicitly modeling the distortion and rectification process. In this paper, we propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same. Specifically, we devise a new network architecture with a shared encoder and several prediction heads, each of which predicts the distortion parameter of a specific distortion model. We further leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters and exploit the intra- and inter-model consistency between them during training, thereby leading to a self-supervised learning scheme without the need for ground-truth distortion parameters or normal images. Experiments on synthetic dataset and real-world fisheye images demonstrate that our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods. Self-supervised learning also improves the universality of distortion models while keeping their self-consistency.