Abstract:Depth estimation is crucial for interpreting complex environments, especially in areas such as autonomous vehicle navigation and robotics. Nonetheless, obtaining accurate depth readings from event camera data remains a formidable challenge. Event cameras operate differently from traditional digital cameras, continuously capturing data and generating asynchronous binary spikes that encode time, location, and light intensity. Yet, the unique sampling mechanisms of event cameras render standard image based algorithms inadequate for processing spike data. This necessitates the development of innovative, spike-aware algorithms tailored for event cameras, a task compounded by the irregularity, continuity, noise, and spatial and temporal characteristics inherent in spiking data.Harnessing the strong generalization capabilities of transformer neural networks for spatiotemporal data, we propose a purely spike-driven spike transformer network for depth estimation from spiking camera data. To address performance limitations with Spiking Neural Networks (SNN), we introduce a novel single-stage cross-modality knowledge transfer framework leveraging knowledge from a large vision foundational model of artificial neural networks (ANN) (DINOv2) to enhance the performance of SNNs with limited data. Our experimental results on both synthetic and real datasets show substantial improvements over existing models, with notable gains in Absolute Relative and Square Relative errors (49% and 39.77% improvements over the benchmark model Spike-T, respectively). Besides accuracy, the proposed model also demonstrates reduced power consumptions, a critical factor for practical applications.
Abstract:Accurate and timely detection of plant stress is essential for yield protection, allowing better-targeted intervention strategies. Recent advances in remote sensing and deep learning have shown great potential for rapid non-invasive detection of plant stress in a fully automated and reproducible manner. However, the existing models always face several challenges: 1) computational inefficiency and the misclassifications between the different stresses with similar symptoms; and 2) the poor interpretability of the host-stress interaction. In this work, we propose a novel fast Fourier Convolutional Neural Network (FFDNN) for accurate and explainable detection of two plant stresses with similar symptoms (i.e. Wheat Yellow Rust And Nitrogen Deficiency). Specifically, unlike the existing CNN models, the main components of the proposed model include: 1) a fast Fourier convolutional block, a newly fast Fourier transformation kernel as the basic perception unit, to substitute the traditional convolutional kernel to capture both local and global responses to plant stress in various time-scale and improve computing efficiency with reduced learning parameters in Fourier domain; 2) Capsule Feature Encoder to encapsulate the extracted features into a series of vector features to represent part-to-whole relationship with the hierarchical structure of the host-stress interactions of the specific stress. In addition, in order to alleviate over-fitting, a photochemical vegetation indices-based filter is placed as pre-processing operator to remove the non-photochemical noises from the input Sentinel-2 time series.
Abstract:Remote sensing data has been widely used for various Earth Observation (EO) missions such as land use and cover classification, weather forecasting, agricultural management, and environmental monitoring. Most existing remote sensing data-based models are based on supervised learning that requires large and representative human-labelled data for model training, which is costly and time-consuming. Recently, self-supervised learning (SSL) enables the models to learn a representation from orders of magnitude more unlabelled data. This representation has been proven to boost the performance of downstream tasks and has potential for remote sensing applications. The success of SSL is heavily dependent on a pre-designed pretext task, which introduces an inductive bias into the model from a large amount of unlabelled data. Since remote sensing imagery has rich spectral information beyond the standard RGB colour space, the pretext tasks established in computer vision based on RGB images may not be straightforward to be extended to the multi/hyperspectral domain. To address this challenge, this work has designed a novel SSL framework that is capable of learning representation from both spectra-spatial information of unlabelled data. The framework contains two novel pretext tasks for object-based and pixel-based remote sensing data analysis methods, respectively. Through two typical downstream tasks evaluation (a multi-label land cover classification task on Sentienl-2 multispectral datasets and a ground soil parameter retrieval task on hyperspectral datasets), the results demonstrate that the representation obtained through the proposed SSL achieved a significant improvement in model performance.
Abstract:Performance modelling of a deep learning application is essential to improve and quantify the efficiency of the model framework. However, existing performance models are mostly case-specific, with limited capability for the new deep learning frameworks/applications. In this paper, we propose a generic performance model of an application in a distributed environment with a generic expression of the application execution time that considers the influence of both intrinsic factors/operations (e.g. algorithmic parameters/internal operations) and extrinsic scaling factors (e.g. the number of processors, data chunks and batch size). We formulate it as a global optimization problem and solve it using regularization on a cost function and differential evolution algorithm to find the best-fit values of the constants in the generic expression to match the experimentally determined computation time. We have evaluated the proposed model on three deep learning frameworks (i.e., TensorFlow, MXnet, and Pytorch). The experimental results show that the proposed model can provide accurate performance predictions and interpretability. In addition, the proposed work can be applied to any distributed deep neural network without instrumenting the code and provides insight into the factors affecting performance and scalability.
Abstract:Structural magnetic resonance imaging (sMRI) can identify subtle brain changes due to its high contrast for soft tissues and high spatial resolution. It has been widely used in diagnosing neurological brain diseases, such as Alzheimer disease (AD). However, the size of 3D high-resolution data poses a significant challenge for data analysis and processing. Since only a few areas of the brain show structural changes highly associated with AD, the patch-based methods dividing the whole image data into several small regular patches have shown promising for more efficient sMRI-based image analysis. The major challenges of the patch-based methods on sMRI include identifying the discriminative patches, combining features from the discrete discriminative patches, and designing appropriate classifiers. This work proposes a novel patch-based deep learning network (sMRI-PatchNet) with explainable patch localisation and selection for AD diagnosis using sMRI. Specifically, it consists of two primary components: 1) A fast and efficient explainable patch selection mechanism for determining the most discriminative patches based on computing the SHapley Additive exPlanations (SHAP) contribution to a transfer learning model for AD diagnosis on massive medical data; and 2) A novel patch-based network for extracting deep features and AD classfication from the selected patches with position embeddings to retain position information, capable of capturing the global and local information of inter- and intra-patches. This method has been applied for the AD classification and the prediction of the transitional state moderate cognitive impairment (MCI) conversion with real datasets.
Abstract:Security and safety are of paramount importance to human-robot interaction, either for autonomous robots or human-robot collaborative manufacturing. The intertwined relationship between security and safety has imposed new challenges on the emerging digital twin systems of various types of robots. To be specific, the attack of either the cyber-physical system or the digital-twin system could cause severe consequences to the other. Particularly, the attack of a digital-twin system that is synchronized with a cyber-physical system could cause lateral damage to humans and other surrounding facilities. This paper demonstrates that for Robot Operating System (ROS) driven systems, attacks such as the person-in-the-middle attack of the digital-twin system could eventually lead to a collapse of the cyber-physical system, whether it is an industrial robot or an autonomous mobile robot, causing unexpected consequences. We also discuss potential solutions to alleviate such attacks.
Abstract:Deep Neural Network (DNN) models are usually trained sequentially from one layer to another, which causes forward, backward and update locking's problems, leading to poor performance in terms of training time. The existing parallel strategies to mitigate these problems provide suboptimal runtime performance. In this work, we have proposed a novel layer-wise partitioning and merging, forward and backward pass parallel framework to provide better training performance. The novelty of the proposed work consists of 1) a layer-wise partition and merging model which can minimise communication overhead between devices without the memory cost of existing strategies during the training process; 2) a forward pass and backward pass parallelisation and optimisation to address the update locking problem and minimise the total training cost. The experimental evaluation on real use cases shows that the proposed method outperforms the state-of-the-art approaches in terms of training speed; and achieves almost linear speedup without compromising the accuracy performance of the non-parallel approach.
Abstract:Realistic hyperspectral image (HSI) super-resolution (SR) techniques aim to generate a high-resolution (HR) HSI with higher spectral and spatial fidelity from its low-resolution (LR) counterpart. The generative adversarial network (GAN) has proven to be an effective deep learning framework for image super-resolution. However, the optimisation process of existing GAN-based models frequently suffers from the problem of mode collapse, leading to the limited capacity of spectral-spatial invariant reconstruction. This may cause the spectral-spatial distortion on the generated HSI, especially with a large upscaling factor. To alleviate the problem of mode collapse, this work has proposed a novel GAN model coupled with a latent encoder (LE-GAN), which can map the generated spectral-spatial features from the image space to the latent space and produce a coupling component to regularise the generated samples. Essentially, we treat an HSI as a high-dimensional manifold embedded in a latent space. Thus, the optimisation of GAN models is converted to the problem of learning the distributions of high-resolution HSI samples in the latent space, making the distributions of the generated super-resolution HSIs closer to those of their original high-resolution counterparts. We have conducted experimental evaluations on the model performance of super-resolution and its capability in alleviating mode collapse. The proposed approach has been tested and validated based on two real HSI datasets with different sensors (i.e. AVIRIS and UHD-185) for various upscaling factors and added noise levels, and compared with the state-of-the-art super-resolution models (i.e. HyCoNet, LTTR, BAGAN, SR- GAN, WGAN).
Abstract:Nitrogen (N) fertiliser is routinely applied by farmers to increase crop yields. At present, farmers often over-apply N fertilizer in some locations or timepoints because they do not have high-resolution crop N status data. N-use efficiency can be low, with the remaining N lost to the environment, resulting in high production costs and environmental pollution. Accurate and timely estimation of N status in crops is crucial to improving cropping systems' economic and environmental sustainability. The conventional approaches based on tissue analysis in the laboratory for estimating N status in plants are time consuming and destructive. Recent advances in remote sensing and machine learning have shown promise in addressing the aforementioned challenges in a non-destructive way. We propose a novel deep learning framework: a channel-spatial attention-based vision transformer (CSVT) for estimating crop N status from large images collected from a UAV in a wheat field. Unlike the existing works, the proposed CSVT introduces a Channel Attention Block (CAB) and a Spatial Interaction Block (SIB), which allows capturing nonlinear characteristics of spatial-wise and channel-wise features from UAV digital aerial imagery, for accurate N status prediction in wheat crops. Moreover, since acquiring labeled data is time consuming and costly, local-to-global self-supervised learning is introduced to pre-train the CSVT with extensive unlabelled data. The proposed CSVT has been compared with the state-of-the-art models, tested and validated on both testing and independent datasets. The proposed approach achieved high accuracy (0.96) with good generalizability and reproducibility for wheat N status estimation.
Abstract:Accurate and rapid detection of COVID-19 pneumonia is crucial for optimal patient treatment. Chest X-Ray (CXR) is the first line imaging test for COVID-19 pneumonia diagnosis as it is fast, cheap and easily accessible. Inspired by the success of deep learning (DL) in computer vision, many DL-models have been proposed to detect COVID-19 pneumonia using CXR images. Unfortunately, these deep classifiers lack the transparency in interpreting findings, which may limit their applications in clinical practice. The existing commonly used visual explanation methods are either too noisy or imprecise, with low resolution, and hence are unsuitable for diagnostic purposes. In this work, we propose a novel explainable deep learning framework (CXRNet) for accurate COVID-19 pneumonia detection with an enhanced pixel-level visual explanation from CXR images. The proposed framework is based on a new Encoder-Decoder-Encoder multitask architecture, allowing for both disease classification and visual explanation. The method has been evaluated on real world CXR datasets from both public and private data sources, including: healthy, bacterial pneumonia, viral pneumonia and COVID-19 pneumonia cases The experimental results demonstrate that the proposed method can achieve a satisfactory level of accuracy and provide fine-resolution classification activation maps for visual explanation in lung disease detection. The Average Accuracy, the Precision, Recall and F1-score of COVID-19 pneumonia reached 0.879, 0.985, 0.992 and 0.989, respectively. We have also found that using lung segmented (CXR) images can help improve the performance of the model. The proposed method can provide more detailed high resolution visual explanation for the classification decision, compared to current state-of-the-art visual explanation methods and has a great potential to be used in clinical practice for COVID-19 pneumonia diagnosis.