Abstract:Nodes in the real-world graphs exhibit diverse patterns in numerous aspects, such as degree and homophily. However, most existent node predictors fail to capture a wide range of node patterns or to make predictions based on distinct node patterns, resulting in unsatisfactory classification performance. In this paper, we reveal that different node predictors are good at handling nodes with specific patterns and only apply one node predictor uniformly could lead to suboptimal result. To mitigate this gap, we propose a mixture of experts framework, MoE-NP, for node classification. Specifically, MoE-NP combines a mixture of node predictors and strategically selects models based on node patterns. Experimental results from a range of real-world datasets demonstrate significant performance improvements from MoE-NP.
Abstract:Recommender systems play a pivotal role across practical scenarios, showcasing remarkable capabilities in user preference modeling. However, the centralized learning paradigm predominantly used raises serious privacy concerns. The federated recommender system (FedRS) addresses this by updating models on clients, while a central server orchestrates training without accessing private data. Existing FedRS approaches, however, face unresolved challenges, including non-convex optimization, vulnerability, potential privacy leakage risk, and communication inefficiency. This paper addresses these challenges by reformulating the federated recommendation problem as a convex optimization issue, ensuring convergence to the global optimum. Based on this, we devise a novel method, RFRec, to tackle this optimization problem efficiently. In addition, we propose RFRecF, a highly efficient version that incorporates non-uniform stochastic gradient descent to improve communication efficiency. In user preference modeling, both methods learn local and global models, collaboratively learning users' common and personalized interests under the federated learning setting. Moreover, both methods significantly enhance communication efficiency, robustness, and privacy protection, with theoretical support. Comprehensive evaluations on four benchmark datasets demonstrate RFRec and RFRecF's superior performance compared to diverse baselines.
Abstract:Transformer models have achieved remarkable success in sequential recommender systems (SRSs). However, computing the attention matrix in traditional dot-product attention mechanisms results in a quadratic complexity with sequence lengths, leading to high computational costs for long-term sequential recommendation. Motivated by the above observation, we propose a novel L2-Normalized Linear Attention for the Transformer-based Sequential Recommender Systems (LinRec), which theoretically improves efficiency while preserving the learning capabilities of the traditional dot-product attention. Specifically, by thoroughly examining the equivalence conditions of efficient attention mechanisms, we show that LinRec possesses linear complexity while preserving the property of attention mechanisms. In addition, we reveal its latent efficiency properties by interpreting the proposed LinRec mechanism through a statistical lens. Extensive experiments are conducted based on two public benchmark datasets, demonstrating that the combination of LinRec and Transformer models achieves comparable or even superior performance than state-of-the-art Transformer-based SRS models while significantly improving time and memory efficiency.
Abstract:Deep learning has been widely applied in recommender systems, which has achieved revolutionary progress recently. However, most existing learning-based methods assume that the user and item distributions remain unchanged between the training phase and the test phase. However, the distribution of user and item features can naturally shift in real-world scenarios, potentially resulting in a substantial decrease in recommendation performance. This phenomenon can be formulated as an Out-Of-Distribution (OOD) recommendation problem. To address this challenge, we propose a novel Dual Test-Time-Training framework for OOD Recommendation, termed DT3OR. In DT3OR, we incorporate a model adaptation mechanism during the test-time phase to carefully update the recommendation model, allowing the model to specially adapt to the shifting user and item features. To be specific, we propose a self-distillation task and a contrastive task to assist the model learning both the user's invariant interest preferences and the variant user/item characteristics during the test-time phase, thus facilitating a smooth adaptation to the shifting features. Furthermore, we provide theoretical analysis to support the rationale behind our dual test-time training framework. To the best of our knowledge, this paper is the first work to address OOD recommendation via a test-time-training strategy. We conduct experiments on three datasets with various backbones. Comprehensive experimental results have demonstrated the effectiveness of DT3OR compared to other state-of-the-art baselines.
Abstract:Knowledge of the domain of applicability of a machine learning model is essential to ensuring accurate and reliable model predictions. In this work, we develop a new approach of assessing model domain and demonstrate that our approach provides accurate and meaningful designation of in-domain versus out-of-domain when applied across multiple model types and material property data sets. Our approach assesses the distance between a test and training data point in feature space by using kernel density estimation and shows that this distance provides an effective tool for domain determination. We show that chemical groups considered unrelated based on established chemical knowledge exhibit significant dissimilarities by our measure. We also show that high measures of dissimilarity are associated with poor model performance (i.e., high residual magnitudes) and poor estimates of model uncertainty (i.e., unreliable uncertainty estimation). Automated tools are provided to enable researchers to establish acceptable dissimilarity thresholds to identify whether new predictions of their own machine learning models are in-domain versus out-of-domain.
Abstract:Graph Neural Networks have demonstrated great success in various fields of multimedia. However, the distribution shift between the training and test data challenges the effectiveness of GNNs. To mitigate this challenge, Test-Time Training (TTT) has been proposed as a promising approach. Traditional TTT methods require a demanding unsupervised training strategy to capture the information from test to benefit the main task. Inspired by the great annotation ability of Large Language Models (LLMs) on Text-Attributed Graphs (TAGs), we propose to enhance the test-time training on graphs with LLMs as annotators. In this paper, we design a novel Test-Time Training pipeline, LLMTTT, which conducts the test-time adaptation under the annotations by LLMs on a carefully-selected node set. Specifically, LLMTTT introduces a hybrid active node selection strategy that considers not only node diversity and representativeness, but also prediction signals from the pre-trained model. Given annotations from LLMs, a two-stage training strategy is designed to tailor the test-time model with the limited and noisy labels. A theoretical analysis ensures the validity of our method and extensive experiments demonstrate that the proposed LLMTTT can achieve a significant performance improvement compared to existing Out-of-Distribution (OOD) generalization methods.
Abstract:The integration of multimodal information into sequential recommender systems has attracted significant attention in recent research. In the initial stages of multimodal sequential recommendation models, the mainstream paradigm was ID-dominant recommendations, wherein multimodal information was fused as side information. However, due to their limitations in terms of transferability and information intrusion, another paradigm emerged, wherein multimodal features were employed directly for recommendation, enabling recommendation across datasets. Nonetheless, it overlooked user ID information, resulting in low information utilization and high training costs. To this end, we propose an innovative framework, BivRec, that jointly trains the recommendation tasks in both ID and multimodal views, leveraging their synergistic relationship to enhance recommendation performance bidirectionally. To tackle the information heterogeneity issue, we first construct structured user interest representations and then learn the synergistic relationship between them. Specifically, BivRec comprises three modules: Multi-scale Interest Embedding, comprehensively modeling user interests by expanding user interaction sequences with multi-scale patching; Intra-View Interest Decomposition, constructing highly structured interest representations using carefully designed Gaussian attention and Cluster attention; and Cross-View Interest Learning, learning the synergistic relationship between the two recommendation views through coarse-grained overall semantic similarity and fine-grained interest allocation similarity BiVRec achieves state-of-the-art performance on five datasets and showcases various practical advantages.
Abstract:Multimodal Large Language Models (MLLMs) have experienced significant advancements recently. Nevertheless, challenges persist in the accurate recognition and comprehension of intricate details within high-resolution images. Despite being indispensable for the development of robust MLLMs, this area remains underinvestigated. To tackle this challenge, our work introduces InfiMM-HD, a novel architecture specifically designed for processing images of different resolutions with low computational overhead. This innovation facilitates the enlargement of MLLMs to higher-resolution capabilities. InfiMM-HD incorporates a cross-attention module and visual windows to reduce computation costs. By integrating this architectural design with a four-stage training pipeline, our model attains improved visual perception efficiently and cost-effectively. Empirical study underscores the robustness and effectiveness of InfiMM-HD, opening new avenues for exploration in related areas. Codes and models can be found at https://huggingface.co/Infi-MM/infimm-hd
Abstract:Temporal Point Processes (TPPs) hold a pivotal role in modeling event sequences across diverse domains, including social networking and e-commerce, and have significantly contributed to the advancement of recommendation systems and information retrieval strategies. Through the analysis of events such as user interactions and transactions, TPPs offer valuable insights into behavioral patterns, facilitating the prediction of future trends. However, accurately forecasting future events remains a formidable challenge due to the intricate nature of these patterns. The integration of Neural Networks with TPPs has ushered in the development of advanced deep TPP models. While these models excel at processing complex and nonlinear temporal data, they encounter limitations in modeling intensity functions, grapple with computational complexities in integral computations, and struggle to capture long-range temporal dependencies effectively. In this study, we introduce the CuFun model, representing a novel approach to TPPs that revolves around the Cumulative Distribution Function (CDF). CuFun stands out by uniquely employing a monotonic neural network for CDF representation, utilizing past events as a scaling factor. This innovation significantly bolsters the model's adaptability and precision across a wide range of data scenarios. Our approach addresses several critical issues inherent in traditional TPP modeling: it simplifies log-likelihood calculations, extends applicability beyond predefined density function forms, and adeptly captures long-range temporal patterns. Our contributions encompass the introduction of a pioneering CDF-based TPP model, the development of a methodology for incorporating past event information into future event prediction, and empirical validation of CuFun's effectiveness through extensive experimentation on synthetic and real-world datasets.
Abstract:Strong Artificial Intelligence (Strong AI) or Artificial General Intelligence (AGI) with abstract reasoning ability is the goal of next-generation AI. Recent advancements in Large Language Models (LLMs), along with the emerging field of Multimodal Large Language Models (MLLMs), have demonstrated impressive capabilities across a wide range of multimodal tasks and applications. Particularly, various MLLMs, each with distinct model architectures, training data, and training stages, have been evaluated across a broad range of MLLM benchmarks. These studies have, to varying degrees, revealed different aspects of the current capabilities of MLLMs. However, the reasoning abilities of MLLMs have not been systematically investigated. In this survey, we comprehensively review the existing evaluation protocols of multimodal reasoning, categorize and illustrate the frontiers of MLLMs, introduce recent trends in applications of MLLMs on reasoning-intensive tasks, and finally discuss current practices and future directions. We believe our survey establishes a solid base and sheds light on this important topic, multimodal reasoning.