Abstract:Face recognition has witnessed remarkable advancements in recent years, thanks to the development of deep learning techniques.However, an off-the-shelf face recognition model as a commercial service could be stolen by model stealing attacks, posing great threats to the rights of the model owner.Model fingerprinting, as a model stealing detection method, aims to verify whether a suspect model is stolen from the victim model, gaining more and more attention nowadays.Previous methods always utilize transferable adversarial examples as the model fingerprint, but this method is known to be sensitive to adversarial defense and transfer learning techniques.To address this issue, we consider the pairwise relationship between samples instead and propose a novel yet simple model stealing detection method based on SAmple Correlation (SAC).Specifically, we present SAC-JC that selects JPEG compressed samples as model inputs and calculates the correlation matrix among their model outputs.Extensive results validate that SAC successfully defends against various model stealing attacks in deep face recognition, encompassing face verification and face emotion recognition, exhibiting the highest performance in terms of AUC, p-value and F1 score.Furthermore, we extend our evaluation of SAC-JC to object recognition datasets including Tiny-ImageNet and CIFAR10, which also demonstrates the superior performance of SAC-JC to previous methods.The code will be available at \url{https://github.com/guanjiyang/SAC_JC}.
Abstract:Unsupervised domain adaptation aims to transfer knowledge from a related, label-rich source domain to an unlabeled target domain, thereby circumventing the high costs associated with manual annotation. Recently, there has been growing interest in source-free domain adaptation, a paradigm in which only a pre-trained model, rather than the labeled source data, is provided to the target domain. Given the potential risk of source data leakage via model inversion attacks, this paper introduces a novel setting called black-box domain adaptation, where the source model is accessible only through an API that provides the predicted label along with the corresponding confidence value for each query. We develop a two-step framework named $\textbf{Pro}$totypical $\textbf{D}$istillation and $\textbf{D}$ebiased tun$\textbf{ing}$ ($\textbf{ProDDing}$). In the first step, ProDDing leverages both the raw predictions from the source model and prototypes derived from the target domain as teachers to distill a customized target model. In the second step, ProDDing keeps fine-tuning the distilled model by penalizing logits that are biased toward certain classes. Empirical results across multiple benchmarks demonstrate that ProDDing outperforms existing black-box domain adaptation methods. Moreover, in the case of hard-label black-box domain adaptation, where only predicted labels are available, ProDDing achieves significant improvements over these methods. Code will be available at \url{https://github.com/tim-learn/ProDDing/}.
Abstract:So far, efficient fine-tuning has become a popular strategy for enhancing the capabilities of foundation models on downstream tasks by learning plug-and-play modules. However, existing methods overlook a crucial issue: if the underlying foundation model is updated, are these plug-and-play modules still effective? In this paper, we first conduct a detailed analysis of various fine-tuning methods on the CLIP in terms of their compatibility with model updates. The study reveals that many high-performing fine-tuning methods fail to be compatible with the upgraded models. To address this, we propose a novel approach, Class-conditioned Context Optimization (ContCoOp), which integrates learnable prompts with class embeddings using an attention layer before inputting them into the text encoder. Consequently, the prompts can dynamically adapt to the changes in embedding space (due to model updates), ensuring continued effectiveness. Extensive experiments over 15 datasets show that our ContCoOp achieves the highest compatibility over the baseline methods, and exhibits robust out-of-distribution generalization.
Abstract:The success of Multimodal Large Language Models (MLLMs) in the image domain has garnered wide attention from the research community. Drawing on previous successful experiences, researchers have recently explored extending the success to the video understanding realms. Apart from training from scratch, an efficient way is to utilize the pre-trained image-LLMs, leading to two mainstream approaches, i.e. zero-shot inference and further fine-tuning with video data. In this work, our study of these approaches harvests an effective data augmentation method. We first make a deeper inspection of the zero-shot inference way and identify two limitations, i.e. limited generalization and lack of temporal understanding capabilities. Thus, we further investigate the fine-tuning approach and find a low learning efficiency when simply using all the video data samples, which can be attributed to a lack of instruction diversity. Aiming at this issue, we develop a method called T2Vid to synthesize video-like samples to enrich the instruction diversity in the training corpus. Integrating these data enables a simple and efficient training scheme, which achieves performance comparable to or even superior to using full video datasets by training with just 15% the sample size. Meanwhile, we find that the proposed scheme can boost the performance of long video understanding without training with long video samples. We hope our study will spark more thinking about using MLLMs for video understanding and curation of high-quality data. The code is released at https://github.com/xjtupanda/T2Vid.
Abstract:As a prominent direction of Artificial General Intelligence (AGI), Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia. Building upon pre-trained LLMs, this family of models further develops multimodal perception and reasoning capabilities that are impressive, such as writing code given a flow chart or creating stories based on an image. In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models. Distinct from the traditional train-eval-test paradigm that only favors a single task like image classification, the versatility of MLLMs has spurred the rise of various new benchmarks and evaluation methods. In this paper, we aim to present a comprehensive survey of MLLM evaluation, discussing four key aspects: 1) the summarised benchmarks types divided by the evaluation capabilities, including foundation capabilities, model self-analysis, and extented applications; 2) the typical process of benchmark counstruction, consisting of data collection, annotation, and precautions; 3) the systematic evaluation manner composed of judge, metric, and toolkit; 4) the outlook for the next benchmark. This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods, thereby driving the progress of MLLM research.
Abstract:The Softmax attention mechanism in Transformer models is notoriously computationally expensive, particularly due to its quadratic complexity, posing significant challenges in vision applications. In contrast, linear attention provides a far more efficient solution by reducing the complexity to linear levels. However, compared to Softmax attention, linear attention often experiences significant performance degradation. Our experiments indicate that this performance drop is due to the low-rank nature of linear attention's feature map, which hinders its ability to adequately model complex spatial information. In this paper, to break the low-rank dilemma of linear attention, we conduct rank analysis from two perspectives: the KV buffer and the output features. Consequently, we introduce Rank-Augmented Linear Attention (RALA), which rivals the performance of Softmax attention while maintaining linear complexity and high efficiency. Based on RALA, we construct the Rank-Augmented Vision Linear Transformer (RAVLT). Extensive experiments demonstrate that RAVLT achieves excellent performance across various vision tasks. Specifically, without using any additional labels, data, or supervision during training, RAVLT achieves an 84.4% Top-1 accuracy on ImageNet-1k with only 26M parameters and 4.6G FLOPs. This result significantly surpasses previous linear attention mechanisms, fully illustrating the potential of RALA. Code will be available at https://github.com/qhfan/RALA.
Abstract:The rapid evolution of multimodal foundation models has led to significant advancements in cross-modal understanding and generation across diverse modalities, including text, images, audio, and video. However, these models remain susceptible to jailbreak attacks, which can bypass built-in safety mechanisms and induce the production of potentially harmful content. Consequently, understanding the methods of jailbreak attacks and existing defense mechanisms is essential to ensure the safe deployment of multimodal generative models in real-world scenarios, particularly in security-sensitive applications. To provide comprehensive insight into this topic, this survey reviews jailbreak and defense in multimodal generative models. First, given the generalized lifecycle of multimodal jailbreak, we systematically explore attacks and corresponding defense strategies across four levels: input, encoder, generator, and output. Based on this analysis, we present a detailed taxonomy of attack methods, defense mechanisms, and evaluation frameworks specific to multimodal generative models. Additionally, we cover a wide range of input-output configurations, including modalities such as Any-to-Text, Any-to-Vision, and Any-to-Any within generative systems. Finally, we highlight current research challenges and propose potential directions for future research.The open-source repository corresponding to this work can be found at https://github.com/liuxuannan/Awesome-Multimodal-Jailbreak.
Abstract:Most incremental learners excessively prioritize coarse classes of objects while neglecting various kinds of states (e.g. color and material) attached to the objects. As a result, they are limited in the ability to reason fine-grained compositionality of state-object pairs. To remedy this limitation, we propose a novel task called Compositional Incremental Learning (composition-IL), enabling the model to recognize state-object compositions as a whole in an incremental learning fashion. Since the lack of suitable benchmarks, we re-organize two existing datasets and make them tailored for composition-IL. Then, we propose a prompt-based Composition Incremental Learner (CompILer), to overcome the ambiguous composition boundary problem which challenges composition-IL largely. Specifically, we exploit multi-pool prompt learning, which is regularized by inter-pool prompt discrepancy and intra-pool prompt diversity. Besides, we devise object-injected state prompting by using object prompts to guide the selection of state prompts. Furthermore, we fuse the selected prompts by a generalized-mean strategy, to eliminate irrelevant information learned in the prompts. Extensive experiments on two datasets exhibit state-of-the-art performance achieved by CompILer.
Abstract:Prompt-based all-in-one image restoration (IR) frameworks have achieved remarkable performance by incorporating degradation-specific information into prompt modules. Nevertheless, handling the complex and diverse degradations encountered in real-world scenarios remains a significant challenge. To address this challenge, we propose LoRA-IR, a flexible framework that dynamically leverages compact low-rank experts to facilitate efficient all-in-one image restoration. Specifically, LoRA-IR consists of two training stages: degradation-guided pre-training and parameter-efficient fine-tuning. In the pre-training stage, we enhance the pre-trained CLIP model by introducing a simple mechanism that scales it to higher resolutions, allowing us to extract robust degradation representations that adaptively guide the IR network. In the fine-tuning stage, we refine the pre-trained IR network using low-rank adaptation (LoRA). Built upon a Mixture-of-Experts (MoE) architecture, LoRA-IR dynamically integrates multiple low-rank restoration experts through a degradation-guided router. This dynamic integration mechanism significantly enhances our model's adaptability to diverse and unknown degradations in complex real-world scenarios. Extensive experiments demonstrate that LoRA-IR achieves state-of-the-art performance across 14 image restoration tasks and 29 benchmarks. Code and pre-trained models will be available at: https://github.com/shallowdream204/LoRA-IR.
Abstract:Diffusion-based text-to-image generation models have significantly advanced the field of art content synthesis. However, current portrait stylization methods generally require either model fine-tuning based on examples or the employment of DDIM Inversion to revert images to noise space, both of which substantially decelerate the image generation process. To overcome these limitations, this paper presents an inversion-free portrait stylization framework based on diffusion models that accomplishes content and style feature fusion in merely four sampling steps. We observed that Latent Consistency Models employing consistency distillation can effectively extract representative Consistency Features from noisy images. To blend the Consistency Features extracted from both content and style images, we introduce a Style Enhancement Attention Control technique that meticulously merges content and style features within the attention space of the target image. Moreover, we propose a feature merging strategy to amalgamate redundant features in Consistency Features, thereby reducing the computational load of attention control. Extensive experiments have validated the effectiveness of our proposed framework in enhancing stylization efficiency and fidelity. The code is available at \url{https://github.com/liujin112/ZePo}.